
m-Al? 499 CHIPS: A TOOL FOR DEVELOPING SOFTARE INTERFACES L/I
INTERACTIVELY..(U) PITTSBURGH UNIV PA LEARNING RESEARCH
MID DEVELOPMENT CENTER.. R E CUNNINGHAM ET AL. OCT 97

UNCLSSIFIED UPITT'LRDC/ONR/LSP4 N 1 4-3-K-655 F/12/ ML

m~~~EEhhhhE

%. %

+'k .', --

m*".%. %

I.25 iU 116 -"---

.- ;"-:

% %p

I~h

or.~-a of- *

%~ %

.-..36..-.

miii I L 140

Jill I ,.-......
-,.;.___,.

.:,.[-.[.-

IT,

..,k t',.

-- S .+at '

mp "% %

k .' ." ,." .." ", " ,,," -." .. ." . .,. " . " " " -" " " " " +" " " " " "+ S" .

In, .• • • • + o • -
,.-' ,.-, -_ q "++. "r,"',- " J "-"' '+" +'', ' . + ",7 -. '- ' '- -'-' -, -, ' +"--"'= "-- -"-'" '-"7 '- '" '- "-"'-- " +- , " -= .'''a

i "."". -". .+,
"-'

"P .".,'.] ' - .-. . .".'".-, Z ," .'+ Z ",..'.,r; + .
-"

,," -'Z "Z ..% ',"-," .P ' , . "." . ;" "'-. ." ; " ." ''°+-" ." .".. -' .' - , -" ' . ' - -.
L ' Z _" J l m l m j . .j m + - L _ -- u __ k m x m) i i

k . h a m • . . k + . , . k , _ ' +'% l - 'a + . . , . . % + . , - . ..l . , • • . , + . m . -a
-m . -- - + • " + . ,m . + i , ,

,wI , . + . m , • • . . ,m + ,t " • + • , ." ," / . ." + - - " •), . . . , ."
+

a" . " ,i " -

liC FILE COPI

University of Pittsburgh
LEARNING RESEARCH AND DEVELOPMENT CENTER

Chips: A Tool for Developing Software Interfaces Interactively

0

• .-

Robert E. Cunningham NOV 2 5
John D. Corbett

Jeffrey G. Bonar

October, 1087 .

Technical Report No. LSP-4

This work was supported by the Office of Naval Research, under Ccntract No.
N00014-83-6-0148 and N00014-83-K-0655. Any opinions, findings, conclusions, or

recommendations expressed in this report are those of the aithors, and do not necessarily .
reflect the views of the U.S. Government.

Reproduction In whole or part is permitted for any purpose of the United States

Government. 0

Approved for public release: distribution unlimited.

0:

-. 1,. d- . : . Ai- - "- - j i. ". . - . . : . . . - i.: 2, : ': i i- :. ' .I -L . .. -' ---, ,: . : - - " -" '- : . - j

UNCLASSIFIED %
SECURITY CLASSIFICATION OF THIS PACE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKIN~ #/',dh~
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION, AVAILABILITY OF REPORT

2b DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for public release; distribution
unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

UPITT/LRDC/ONR/LSP-4

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Learning Research & Development (If applicable) Personnel & Training Research Programs
Center, Univ. of Pittsburgh Office of Naval Research (Code 1142PT)

6c. ADDRESS (City, State, and ZIPCode) 7b ADDRESS(City, State, and ZIP Code)
3939 O'Hara Street 800 North Quincy Street
Pittsburgh, PA 15260 Arlington, VA 22217-5000

Ba. NAME OF FUNDING/SPONSORING I8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIF,CATION NuMBER
ORGANIZATION (If applicable)

N00014-83-K-0655

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK IWORK UNIT
ELEMENT NO NO NO ACCESSION NO

1161153N RR04206 R04206-00 NR442c524
11 TITLE (Include Security Classification)

CHIPS: A tool for Developing Software Interface Interactively
12 PERSONAL AUTHOR(S)

Robert E. unningham John D. Corbett and Jeffrey G. Bonar
13a TYPE OF REPORT 13b TIME COVERED 114 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Technical FROM TO I 1987, October 23I 65
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GRrIp Human/computer interfaces; Graphical interface; Direct manipu

lation interface Visual programming; Object-oriented program
ming; User interface man gement systems, krogrammlng

19v rnnmRAn (Coninu onrvqs i P
19* ABSTRACT (Continue on reverse if necessary ad identify by block number) Chips is an interective tool for develop-
ing so tware employing graphical numan/computer intertaces on Xerox isp macnines. Oor

.the programmer, Chips provides a rich graphical interface for the creation of rich graphical
interfaces. In the service of an end user, Chips provides classes for modeling the graphi-
cal relationships of objects on the screen and maintaining constraints between them. Several %

large applications, including tutors for programming and electricity, have been developed wit
Chips.
Chips is implemented as a collection of customizable classes in Loops, the objected-oriented "

extension to Interlisp-D. The three fundamental classes provided by Chips are DomainObject,
DisplayObject, and Substrate. DomainObject defines objects of the application domain,
DisplayObject defines mouse-sensitive graphical objects, and Substrate defines specialized
windows for displaying and storing collections of instances of DisplayObject.

20 DISTRIBUTION i AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

Ml UNCLASSIFIED/UNLIMITED C3 SAME AS RPT ElDTIC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OF;iCE SYMBOL

Susan M. Chipman- (202)696-4318 ONR 1142PT
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATON OF THIS PAGE

All other edoitions are obsolete k.(NI.ASS I PI'D

..................

Chips: A Tool for Developing Software Interfaces Interactively

Robert E. Cunningham, John D. Corbett, and
Jeffrey G. Bonar

Learning Research and Development Center
3039 O'Hara Street

University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Technical Report No. LSP-4

This work was supported by the Office of Naval Research, under Contract No.
N00014-83-6-0148 andNO0014-83-K-0655. Any opinions, findings, conclusions, or
recommendations expressed In this report are those of the authors, and do not necessarily
reflect the views of the U.S. Government.

Reproduction In whole or part Is permitted for any purpose of the United States
Government.

Approved for public release; distribution unlimited.

i~

Chips Technical Report

Abstract
Chips is an interactive tool for developing software employing graphical human/computer interfaces
on Xerox Lisp machines. For the programmer, Chips provides a rich graphical interface for the
creation of rich graphical interfaces. In the service of an end user, Chips provides classes for modeling
the graphical relationships of objects on the screen and maintaining constraints between them.
Several large applications have been developed with Chips including intelligent tutors for
programming and electricity.

Chips is implemented as a collection of customizable classes in the Loops object-oriented extensions to
Interlisp-D. The three fundamental classes provided by Chips-are:

DomainObject which defines objects of the application domain - the domain for which the
interface is being built - and ties together the various functionalites provided by the Chips
system;

DisplayObject which defines mouse-sensitive graphical objects;, and
a,

Substrate which defines specialized windows for displaying and storing collections of instances of
DisplayObject.

A programmer creates an interface by specializing existing DomainObjects and drawing new
DisplayObjects with a graphics editor. Instances of DisplayObject and Substrate are assembled on
screen to form the interface. Once the interface has been sketched in this manner, the programmer
can "build inward," creating all other parts of the application through the objects on the screen. Chips
makes this easy by supplying simple and direct access to the source code and data structures of an
application. Chips not only allows one to build powerful graphical interfaces, but provides the sa'me
sort of powerful graphical interface to the programmer building the interface.

Keywords: human/computer interfaces, graphical interface, direct manipulation interface, visual
programming, object-oriented programming, user interface management systems, programming
environments.

Typographic Conventions
Technical terms appearing in the glossary are italicized and underlined upon first use, i.e. display.
Menu selections are printed in a sans-serif font, i.e. Edit Mechanism. Class names are printed in a bold
faced sans-serif font, i.e. Substrate.

oa.

/ . • . . .

Chips Technical Report

Acknowledgments
We would like to thank several people who provided important help and support during the
development of Chips.

We would like to acknowledge several people who developed applications using Chips, often putting up
with and working around deficiencies and bugs in early versions of the system. They provided many
helpful suggestions that were incorporated into the design, discovered problems that we had missed,
and provided much needed evidence that our ideas were on the right track. These diligent folks are
Andrew Bowen, Joyce Friel, Dan Jones, Steve Kalinowski, Debra Logan, Bob Merchant, and Jamie
Schultz.

Stewart Nickolas contributed important ideas to the project as well as providing inspiration for what
can be done with Xerox Lisp machines.

Arlene Weiner tried her best to teach us how to write. In the brief time she had to work with us, she
helped us decide upon our audience and present our ideas coherently.

Doug Roesch did early work with the latest version of Chips and created a lab for beginning Chips
users.

Marty Kent worked on FlowChips, a precursor to Chips, and left us with many good ideas.

Joyce Friel, Stewart Nickolas, and Doug Roesch read and commented on earlier drafts of this report.

Dr. Alan Lesgold, the associate director of the Learning Research and Development Center, is
responsible for the resources we use in our work and responsible that those who grant us resources are
satisfied with all our work in the Intelligent Tutoring Systems Group. Chips could have easily been
written off as a fruitless digression without his faith in us and his vision. Alan provided much needed
support and guidance, both professionally and personally, as well as creating an environment in which
we could do our work. This project could not have happened without him.

Jeff Bonar started and managed the Chips project. The Chips system itself was designed and
implemented in collaboration between John Corbett and Bob Cunningham. We gratefully
acknowledge, however, that Chips was built using as much of Interlisp-D and Loops as we could
rationally incorporate. Bob Cunningham did the lion's share of the writing of this document. John
Corbett wrote earlier drafts, and participated in the writing.

ii

Chips Technical Report

Table of Contents
1. Introduction I.

1.1 The Contribution of Chips... 1
1.2 Current Approaches to Interface Development I
1.3 The Chips Approach to Interface Development2

1.3.1 Exploring and Testing Interface Designs 2
1.3.2 Object-Oriented Interface Design ... 2
1.3.3 Controiling Programs by Manipulating Pictures 3
1.3.4 Mocking Up an Interface... 3
1.3.5 Establishing Relationships Between Application Objects 3

1.4 Interlisp-D/Loops Implementation ... 3
2. Overview .. 4
3. Chips S;, .res .. 5

3.1 Domain Objects as Instances.. 5
3.1.1 Display Objects' Graphical Data Structure .. 5
3.1.2 Multiple Display Objects and Multiple Picture Specifications 7
3.1.3 Physical Connectors .. 8
3.1.4 Graphical Relationships ... 8

3.2 The Substrate ... 8
3.3 The Event Queue... 9
3.4 Connections.. 10
3.5 Mechanisms ... 12
3.6 Events Streams and Display Streams .. 13
3.7 Saving Chips Classes ... 14

4. Chips Interactive Environment... 15
4.1 Chips Icon 15
4.2 Chips Browser... 17
4.3 Modifying~an application through the development interface................................. 20

4.3.1 Displaying overlapping display objects ... 20
4.3.2 Interactive editing of display object instances .. 22
4.3.3 Options available by selecting a substrate.. 26
4.3.4 The Display Editor .. 30

5. A session with Chips... 33
5.1 Creating a new domain object ... 33
5.2 Editing the display object of a class of domain object ... 33

5.2.1 Using the Display Editor ... 34
5.2.2 Defining the figure picture of a display object ... 34
5.2.3 Defining the mask picture of a display object .. 34
5.2.4 Defining the map picture of a display object.. 35

5.3 Using a domain object with a substrate .. 36
5.4 Interactively changing a display object37
5.5 Conclusion.. 39

References.. 41
Appendix A: Special Programming Techniques .. Appendix IlA

A.1I A General Caching Function ... Appendix I A
A.2 Self-Inspecting Code... Appendix IlA
A.3 Fast Bitmap Intersection.. Appendix IA
A.4 The EditWhen Macro .. Appendix 2A

Appendix B: Applications ... Appendix IlB
B.1 Digital Logic .. Appendix 1B
B.2 Bridge VPL.. Appendix 2B
B.3 Mho .. Appendix 6B
B.4 Voltaville............................. .. Appendix 9B

Glossary Glossary 1

-A

i' Chips Technical Report

7,

N

i

I'

Chips Technical Report

1. Introduction
Creating good human/computer interfaces is a notoriously difficult task. Furthermore, our current
best estimates indicate that interface design consumes 50% of the time on a large programming
project. Even with that large time budget, the interfaces produced are usually difficult to debug and
modify. This problem is compounded by the lack of any theory, or even consistent design guidelines,
that could guide the development of interfaces. Even the most carefully thought out interface is likely
to need some redesign when tried with real users.

Chips has been created to simplify the development of sophisticated interfaces. In particular, Chips
can cut the time needed to implement a prototype interface by a factor often. Chips allows interfaces ..
to be designed, thoroughly tested, and then discarded for more effective designs. With the extended
amount of empirical experience afforded by the use of Chips, there is the possibility for a
comprehensive theory of interface to emerge.

To create an interface in Chips, the programmer uses graphic editors to mock up interface designs by
drawing and arranging objects that appear on the computer's display. The application underneath the
interface is created by building inward from this mock-up. Typically, a Chips user is building a direct
manipulation interface (see, for example, Hutchins, et al. [1986].) A direct manipulation interface
allows the user to command the computer by moving and selecting icons designed to behave like the
objects they represent.

1.1 The Contribution of Chips

Chips supports the development of direct manipulation interfaces directly. Chips objects can be
created, displayed, and manipulated directly. All the difficult a' ,orithms for smoothly dragging an
icon across the screen, having that icon interact correctly with other icons it moves over and near, and
connecting mouse or keyboard behavior to underlying functionality are provided in Chips. Chips
provides extensive support for editing the properties and behavior of an application interactively,
through the interface itself. Finally, Chips allows an interface to be simply saved and restored. In
summary, Chips allows the programmer to treat an interface as a object for inspection, manipulation,
and design.

The key potential of Chips is that it provides a sufficiently high level interface design language that a
theory of interface design can emerge. In particular, Chips supports a rich set of syntactic
relationships for objects in a diagram. Although the key difficulty in a theory of interface design is
relating the syntax of the diagram to the underlying semantics of the domain being represented in the
diagram, the systematic syntax of Chips' diagrams allows for a direct attack on representing
semantics. The phrase "syntactic relationships in a diagram" is meant to refer to the 2-D physical
relationships betwcern the graphic elements in a diagram. For example, one icon may be above
another icon, connected to another icon with a line, or have various mouse-sensitive areas (places
where a user can button and invoke a program).

1.2 Current Approaches to Interface Development

Most interfaces are written in traditional programming languages. These languages supply primitive
elements, such as commands for drawing lines and printing text, leaving the programmer to construct
more sophisticated objects such as menus. This is time consuming and often leads to complex and
idiosyncratic interfaces.

User Interface Management Systems (UIMS) [italicized underlined words also appear in the glossaryl
improve this situation by packaging common elements of interfaces so they can be reused In addition,
if the UIMS itself has an interactive interface, it may be possible to create entire application interfacvs
without programming

• ,u .-.- % ° , - ... o , . .. " ' '% %"°', "•" °%"%". .".. "',, " . '. % , ' 4 '. ' " % ''" % '° " " .- % '0 '

UarW W ' .. r -,, ' W7 7 j , N .~ 'V,, , -,,- \L , . .V ,. ,,, ~.. . - - K ,, j -. . .- . J , . ; . . . -'-

Chips Technical Report

', For many applications, a good UIMS is sufficient, however it is not clear what belongs in a good LIMS.

So rather than providing several specific interface elements, Chips provides two generic interface
elements and tools for specializing them.

1.3 The Chips Approach to Interface Development

To create an interface in Chips, the programmer uses graphics editors to mock up interface designs by
% drawing and arranging the objects that appear on the computer's display. It is only a slight

over-simplification to say the application is created by drawing it on the display and adding
functionality by "building inward."

1.3.1 Exploring and Testing Interface Designs

Because so little is known about interface design, it is useful to try out various designs, especially with
potential users [Rosson, et. al., 1987]. The cost of this exploratory approach is prohibitive with
traditional programming languages; this is true even with systems designed for exploratory
programming such as the [nterlisp-D programming environment [Sheil, 1983] unless the programmer

is a real master of interface design. Using Chips, one can experiment with many interface designs in
the time it takes to build a single interface without Chips.

For example, for the programming tutor Bridge, we designed and implemented six versions of a visual
programming language in three months. We estimate that this would have taken at least a year and a
half without Chips.

1.3.2 Object-Oriented Interface Design

Objects on the display are more than pictures; they are objects that respond to the user's actions, such
as selection with the mouse, and interact with one another. For a complete introduction to
object-oriented programming see Smalltalk-80: the Language and Its Implementation [Goldberg and
Robson, 1983].

Object-oriented programming is based on the notion of objects interacting by sending messages to one
another. An object is a semi-autonomous combination of a data structure and procedures for
responding to messages. Message names, unlike procedure names in most programming languages,
need not be unique, thus objects of different classes can use different methods to respond to a particular
message.

A new class of objects can be defined by specifying only how it differs from an existing class of objects.
The new class is said to inherit everything that it does not specifically define. The new class is called a
specialization of those classes used to define it.

The generic interface elements referred to above are classes of objects; they are named DomainObject,
DisplayObject, and Substrate. Objects which are instances of the class DomainObject or any
specialization of the class DomainObject are called domain objects. Objects which are instances of the
class DisplayObject or any specialization of the class DisplayObject are called display objects.
Similarly, objects which are instances of class Substrate are called substrates. The terms domain

object, display object, and substrate are used to refer to instances of these classes. Classes will be
referred to explicitly and printed in a bold sans-serif font, i.e. DomainObject.

Substrates are objects which appear as rectangular regions on the display. They are specialized
windows used to create domain objects and display their associated display objects. Domain objects
are focal points that allow the combination of the various behaviors of the the Chips system. Display
objects are mouse-sensitive objects with arbitrary pictures. DomainObject, DisplayObject, and
Substrate are the basic classes for objects in interfaces. They inherit many of the common aspects of

'2

*2

'• o. ' ° .. o°-. -. " - " o . -°. - ' " " "°.°," °-" o°°' " " ° ° - "-' " i
° '. ' ?

°' "'
" ' ' .

°° ? " ' ° '

Chips Technical Report

graphical interfaces, yet the programmer can specialize any aspect of them and thus is not locked into
the existing ways of doing things. 4-

1.3.3 Controlling Programs by Manipulating Pictures

Chips is especially useful for constructing direct manipulation interfaces (DM1). These allow the user
to command the computer by moving and selecting cartoon-like icons designed to behave somewhat
like the objects they represent. The Apple Macintosh employs direct manipulation extensively and is
widely considered one of the easiest computers to use for people who are not necessarily computer
specialists. The advantages of direct manipulation are widely recognized, [Hutchins, et. al., 19861.

Unfortunately, DMI are often difficult to construct and difficult to modify once they are constructed
The programmer needs to write programs to create the pictures, move the pictures around the screen,
determine what picture the mouse is pointing to, what pictures on the screen represent, what to do
when an icon is selected, and so forth. Although programming languages provide commands for
drawing geometric figures and ways of sensing the mouse, these basic capabilities are far removed
from the task of directly manipulating graphical objects.

Chips classes provide these aspects of DM1 automatically. Once objects from Chips are created and
displayed, they can be manipulated directly; selecting an object with the mouse cursor causes that
object to animate and follow the cursor around the display or causes that object to display a menu of
operations to be performed on it or on objects related to it.

Chips provides extensive support for editing the properties and behavior of an application
interactively, through the interface itself. Every object of an interface that appears on the screen can
be edited by selecting the object and choosing the aspect of the object to edit. This behavior is useful
throughout the development process, so usually the programmer makes the application interface by
adding behavior and only disables the default behavior when it might confuse unsuspecting users by
allowing them to stumble into the program code and data structures.

Thus it is easy to assemble objects of the application interface on the display and having done that, to
use these objects to access relevant portions of the application program code and data structures. This
feature of Chips facilitates the entire software development process by providing convenient access to
the program code and data structures; "What You See Is What You Get" moreover, "What You See
You Can Edit."

1.3.4 Mocking Up the Interface

Using direct manipulation, a user creates an interface by drawing pictures of the interface objects and
arranging them on the screen in appropriate places. The interface can then be saved to a file and
recreated simply by loading the file. This allows a user to effectively mock up an application interface
without programming.

1.3.5 Establishing Relationships Between Application Objects

Chips provides explicit means for establishing connections between domain objects. Chips defines
connections between objects to reflect relationships between those objects both on the display and in
the computer. Chips also defines mechanisms which allow aspects of a domain object to be
implemented with a collection of domain objects, like the clockwork inside a clock

1.4 Interlisp-DfLoops Implementation

Chips is an integrated extension to the lnterlisp-D/Loops programming environment Loops Itobrow
and Stefik, 19811 provides object-oriented programming with multiple inhertanc' Both Loops and
lnterlisp-D [Sannella, 19851 provide a very sophisticated programming environment including
graphical browsers and program inspection facilities They run on Xerox 1100 Series workstations

3

Chips Technical Report

Chips performs well on the Xerox 1186, which is one of the least expensive and least powerful of
workstation class computers. In light of this, we feel the concepts demonstrated by Chips are practical
for almost any workstation.

2. Overview
The remainder of this report discusses Chips from several different perspectives. Section 3, Chips

Structures, gives a detailed explanation of the major features of Chips. Section 4, Chips Interactive
Environment, provides an in depth discussion of the interactive aspects of the Chips development
environment. Section 5, A Session with Chips, presents an example session using Chips to develop

and modify a small portion of an interface. Appendix A, Special Programming Techniques,
describes four programming techniques that we have found useful in the development of Chips:
self-inspecting code, a general purpose caching scheme, a fast bitmap intersection algorithm, and the
EditWhen macro. Appendix B, Applications, describes several systems developed at the Learning

Research and Development Center using Chips. The final section, Glossary, describes key terms used
in this report.

4

.:
-°.4 *~.. K *

. . -

UW1.,d ~~ ~ ~ ~ ;V 1. Y1' %.V~ .'.i- ..- ~.- Ul. V- W - Y M

Chips Technical Report
'A

3. Chips Structures
In this section the major components of the Chips system are presented: Domain Objects, Display
Objects, Picture Specifications, Substrates, Event Queues, Connections, Mechanisms, Event Streams.
and Display Streams. Finally, the strategy used for saving Chips objects is presented.

3.1 Domain Objects as Instances

Domain objects are instances of subclasses of the class DomainObject that combine the functionality

provided by Chips through inheritance, including: displaying themselves on the screen, animating
themselves, connecting themselves to other domain objects, defining their behavior in terms of other
domain objects, saving themselves to a file, and editing their behavior and properties interactivelv

3.1.1 Display Objects' Graphical Data Structure

Each instance of a subclass of DomainObject defines one or more instances of the class DisplayObject

that determine how the domain object is to be displayed. The domain object itself corresponds to an
object in the application domain, while its display object determines how the domain object will
display itself on the screen. For example, in our digital circuit editor, there is a class ofdomain object
called LightBulb. It has display objects associated with it that determine how it will show up on the
screen, but the domain object instance itself determines the object's behavior. It determines how to
process inputs, controls its display objects in response to inputs, and connects to other domain objects.

Each class of domain object defines one or more instances of display object. These display objects are
stored on the domain object class's IV, displayObjects as an association list of the form:

((tag1 displayObjectlnstance). .. (tag, displayObjectlnstancen))

Each instance of a domain object class stores one or more display objects in its displayObjects IV.
These display object instances are copies of those stored on its class's displayObjects IV. Each display
object stored with a particular domain object instance is currently displayed on the screen. When a
display object is removed from the screen, it is also removed from its corresponding domain object.

Each display object defines a figure, mask, and map, stored in the IVs figure, mask, and map,
respectively. The figure and mask are used for displaying instances in a substrate and the map is used
for determining what part of an instance is located where, typically to see what part of a display object
has been selected with the mouse cursor.

Each display object also defines several other IVs including:

object - the domain object that the display object represents

host - the substrate instance that contains the display object

displayStream - the display stream the object is displayed on (usually whe window of its host)

position - the position in the display stream that the display object is located

editor - the editor that is used to modify the display object; usually an instance of the class
DisplayEditor

responsesToSelection - a form that determines the display object's response to being selected with the

mouse cursor oil

physicalConnectors- a list of the physical ccanectors associated with the display object

. - .]

Chips Technical Report

The figure, mask, and each element of the map of a display object is stored as an instance of
PictureSpecification or some subclass of PictureSpecification. Each instance of PictureSpecification

has three lVs:

displayRepresentation - the representation that is* used to display the picture on the screen, the
default display representation "i a bitmap allowing for fast display using BITBLT

editRepresentation - a representation that allows the picture to be edited, presumably in a more
convenient manner that the bitmap; the default edit representation is a list of vector graphic
commands in a format that is recognized by the Display Editor

offset - a position that describes the location of the picture specification relative to the lower left
corner of the display object it is stored in

Thus, the actual representations of the pictures are separated from the operations necessary for

the same picture specification instances; new picture specification instances are only created as

required due to local modifications made to a particular display object.
Because Interlisp-D bitmaps are rectangular and have only one bit per pixel, it takes two bitmaps to

"* represent a figure with an arbitrary shape. One instance of PictureSpecification, the figure, defines

the way the display object will appear on the display; a second instance, the mask of the display object,
defines which areas of the display object are to be opaque and which transparent. The mask is black
only where the corresponding location in the figure is considered opaque. For example, a SmileFace
display object might have the following figure and mask (see figure I below):

D N
(a) (b)

Figure 1. (a) The figure and (b) the mask of class SmileFace

Using this scheme, it is possible to display a figure of arbitrary shape on an arbitrary background. A
simplified version of the display procedure is to erase the area where the figure is to be placed using
the mask and then paint the figure. This process is illustrated in figure 2 below.

(a) initial background (b) after erasing the mask (b) after painting the figure
Figure 2. Procedure for displaying an display object

Chips does its painting and erasing on a separate bitmap and then paints the result on the screen to
avoid the flicker associated with erasing from the screen. This technique is called double buffering.

Note that this procedure does not constrain the figure to be closed nor composed of a single part.
Figure 3 shows the possible combinations offigure and mask and what will be displayed on the screen
with each combination.

6

Chips Technical Report

Figure .~ .
Mask

Background "g'

D, n
T"i 83 esign. C ;3--;(

83+ ',- De.'.sign ' 3:(Oe-.,Ingn

Ct t gn n,. ,, ; ; 1 : : : , : : : ; : : :.:: %

Figure 3. Displaying a figure with various masks on various backgrounds

The map is a list of elements that name the mouse-sensitive parts of the display object. Each element
contains an instance of PictureSpecification and a tag, a mnemonic way to refer to the map element.
The map is a list of the form:

(tag1 PictSpeclnst,

(tag 2 PictSpeclnst 2) (tag3 PictSpeclnst 3

(tag 4 PictSpeclnst 4 .]

The map is treated as a tree. The root contains the region that bounds the entire display object. The
root is followed by subregions that may in turn have subregions, and so on, that distinguish different
parts of the display object. To determine if a display object has been selected and what part was
selected, a depth-first search is performed on the map. The subregions are considered to be contained
in their region.

3.1.2 Multiple Display Objects and Multiple Picture Specifications

In Chips, there are two ways of representing various kinds of multiple display representations with a
particular domain object: multiple display objects and multiple picture specifications.

A domain object may have more than one instance of DisplayObject associated with it, providing more
than one view onto that domain object. This could be used, for example, with a business graphics
application, with a domain object representing gross receipts having a display object that displays a
number in one window, and a barchart representation of the value displayed in another window.

A display object may also have more than one set of picture specification instances associated with it
Each of the following IVs of display object have a property, tagList, which stores information

concerning alternate picture specification sets and the display object's corresponding behavior when a

7."

W ' . -

Chips Technical Report

particular set is used: figure, mask, map, and physicalConnectors. The tagList property stores an

association list of the form:

((tag1 form,) .. (tag, form ,))

that associates certain forms with corresponding tags. Each display object also has an IV, tag, which

stores the current tag being used.

3.1.3 Physical Connectors

Elements of a display object's map may be physical connectors, establishing the subregion they define

to have special significance to another display object landing on that subregion. This can be used, for

example, to establish physical attachment between display objects. In our digital circuit editor, the

display object for the ANDGate domain object (see figure 4) has three physical connectors, two

representing the input leads of the and gate and one representing the and gate's output. When one end

of a wire is placed on top of one of these physical connectors, the wire attaches to the associated lead.

Physical Connectors

Figure 4. Physical connectors for the display object of an ANDGate

Physical connectors are stored in the physicalConnectors IV of a display object in the form:

((PictSpeclnst, position1). .. (PictSpeclnst , positionn))

where position is the position of the connector relative to the lower left corner of the display object.

This position is used to line up the display objects when establishing physical attachment between two
display objects.

3.1.4 Graphical Relationships

Chips provides several methods to determine graphical relationships between display objects and their

parts. These include methods to determine if a display object or one of its parts is above, below, to the

left of. or to the right of another display object or one of its parts. There are also methods to determine

if a display object or one of its parts intersects, is inside of, occludes, or obscures another display object

or one of its parts.

3.2 The Substrate

The class Substrate defines instances that create and manage windows for displaying and

manipulating display objects. A substrate senses mouse cursor activity within its substrate window

and determines what messages to send to itself or to the instances it contains based on the location of

the mouse cursor and the buttons that are pressed.

Figure 5 below illustrates what a substrate looks like. There are two windows, a substrate window

and a prompt window. The substrate window has the title, "Substrate without a name." The substrate

contains two display objects, one an abstract face, and the other, a text display object with the word

"Foo" contained in a box. Each display object that appears in a substrate represents some domain

object.

m8

Chips Technical Report

J 0,
Prompt windowund I

Substrate windo w-- F Background

Chip instances

Figure 5. A default substrate instance containing two display objects

Substrates define several IVs including:

fileComs - the name of the file variable that describes the file that the substrate instance is stored on

fileName - the name of the file the substrate instance is stored on

window - the window that the substrate instance uses to display instances of DisplayObject .PS

contents - a list of instances of DisplayObject that are displayed by the substrate

responsesToSelection - a form that describes the response to pressing a button while the mouse

cursor is inside the window

A substrate's window stores its Substrate instance on its window property, Loopsinstance,

Substrates keep a list of the display objects they contain. This list is used to to redisplay the window,
to find the display object under the mouse cursor, and to save the display objects and their associated
domain objects to a file.

The substrate instance can also save a description of itself to a file that will create a window with the
same attributeswhen a file containing the description is loaded into the environment. Figure 6 shows
a substrate instance for which several of the parameters, such as the border size, background shade,
and title, were changed from their default values. Modifications made to the substrate instance
interactively can be saved and reproduced.

I

Figure 6. A substrate instance with parameters different from their default values

3.3 The Event Queue

In Chips, communication between individual domain objects is handled via an event queue. Each
communication is considered an event and is posted on the queue along with a time when the event is
to occur. The events are then processed in the order of the times declared. This allows events to be
handled asynchronously by a separate process. The event queue was initially developed to avoid the
problems of recursive function calling in complicated simulations [Duisberg, 19861.

Event queues are implemented by the class ChipsAnima Each instance of the class ChipsAnima has

two [Vs:

eventQueue - a list of instances of the record type, queueEvent, with associated time stamps, stored

as a skew heap

9

.. V V V % %;*J, .. .J*- ; %. *;* ;*; ; -. *. **. • .e. . -

- Chips Technical Report

eventQueueProcess - a process that continually polls the eventQueue IV to see if there is an event
whose time stamp indicates that it is time to be processed

When an event queue is established, a process is created that checks the eventQueue IV and sees if
the event on the front of the queue, if there is one, has a time stamp that has expired. If there is such

an event, the process sends the event queue the message ProcessEventQueue L.>at removes the event
from the event queue and sends the message ChangeOccurred to the instance stored in the participant
field of the queueEvent record with the associated parameters. The default event queue, Anima, is

created when Chips is loaded. When Anima is first used, a process is created, called Anima's Queue
Handier.

The record queueEvent has several fields, including:

participant - an instance of the class DomainObject to whom communication is to be propagated

author - an instance of the class DomainObject that initiated the communication

name - an arbitrary tag that is the name of the communication; used to establish different

communication types and to communicate information relevant to the communication

value - a value associated with a particular communication

3.4 Connections

Broadly speaking, a workstation screen normally displays a diagram consisting of windows and icons.
Inside the windows are diagrams and text. Certain relationships are implied through what is
displayed. A facility in Chips, called a connection, can be used to make an implied relationship on the
display explicit for the computer. For example, if a wind6w contains a road map, a line connecting two
dots might indicate that there is a road between the two cities indicated by the dots. The fact that a
road, displayed as a line, leads to a city, displayed as a dot, can be recorded in a connection between the
road instance and the city instance. When the user makes a connection explicit for an application
program, Chips causes the key relationships depicted graphically to be represented internally. Thus
diagrams on the screen can have a syntax and semantics that both the user and the program share,
and that both can manipulate.

Chips provides a class, Connection, whose instances represent relationships between instances of
subclasses of DomainObject. Each instance of Connection has three IVs:

participant\nameList - a list of the f6rm:

((participant 1 . name 1)... (participant,. name,))

where name is some arbitrary tag used for establishing some connection type, or storing information
useful for the participants in a connection, or both; participants are instances of some subclass of
DomainObject.

responsibleObject - an instance that is responsible for propagating the communication from a
domain object to the participants in a connection; the default responsible object is the Anima

timeDelay - an integer which establishes a time delay in the propagation of the connection, if
non-NIL it is added to the current time before the event is placed on the event queue, thereby causing
the event to wait in the event queue until its time arrives; the time delay is expressed in milliseconds

Figure 7 shows the list of participants and names for an instance of PowerSource, from our digital
circuit editor. This power source .s connected to an instance of the class Wire In this example, the

t0
r...................................... . .

Chips Technical Report le

name is used to determine which physical connectors of the two participants are connected, the output r
of the power source and one end of the wire.

Power

Of f

((#$Wire0079 Output endPoint.2))

Figure 7. Connection between a power source and a wire

Connections store an object that is responsible for informing participants in the connection that some
change has occurred that is relevant to the connection; the default is the event queue. A time delay,

useful for simulations, may also be established for a connection and causes a delay before the
propagation of the change to the participant. Connections can be used to represent many kinds of
relationships between domain objects, such as physical attachment or containment.

The class ConnectionMixin provides the capability of connections to a class of domain object. -

Connections are established between a domain object and other domain objects. Each instance of
DomainObject with connection capability stores a list of instances of the class Connection in an IV

called connections. When a connection is established for a particular domain object, an instance of

Connection is created and stored with that domain object.

When a domain object wants to propagate a connection, it sends the connection instance the message
AnnounceChange, either directly or by sending itself the message PutValueWithConnection or

AnnounceCh'ange. The connection then sends the message ChangeOccurred to the instance stored in

its responsibleObject IV for each participant in the participant/nameList IV of the connection. The

message ChangeOccurred typically takes the parameters author (the domain object initiating the

communication), participant, name, value (the value that has changed), and time (the time that the

propagation is to happen, calculated by adding the value of the timeDelay IV of the connection to the

current time).

Figure 8 shows a simple circuit containing a power source and a light bulb. Note, in our digital circuit
editor, grounding is implicit.

Figure 8. A simple circuit showing connections

In this example, a connection has been established between the output of the power source and one end
of the wire. Another connection has been established between the other end of the wire and the input
of the light bulb. Whenever a change is made to the output of the power source, in this case turning it
on, the change is automatically propagated, through the wire, to the input of the light bulb, which
responds to the change by lighting up.

11

.A A L.

|-|.| . .

Chips Technical Report

The responsible object of a connection is, by default, the event queue. Another kind of responsible
object provided by Chips is a Spy. Instances of the class Spy may be installed as the connection's
responsible object and may be used to redirect connection changes or to do recording. By default, they
just beep when a connection announces a change, and then pass the message to the event queue.

When an instance of the class Spy is installed in a particular connection, the old value of the
responsibleObject IV of that connection is pushed on a stack on the IV property previousValues of the

responsibleObject IV of the connection instance. Removing a spy pops the stack, re-installing the old
responsible object. This provides an easy way to turn recording on and off during an application, for
example.

3.5 Mechanisms

It is also useful to represent the relationship between an object and its parts. The mechanism of a
domain object is a collection of instances of DomainObject, usually connected together, representing
that domain object's internal mechanism. Through the connections, the collection of domain objects
can act as "the clockwork inside the clock."

The class MechanismMixin provides the ability for a domain object to have a mechanism. It provides
IVs to domain objects including:

mechanism - a list of instances of subclasses of the class DomainObject which define this domain

object's behavior.

mechanismEditor - an instance of the class MechanismEditor, used to define and modify the

mechanism of a domain object

If a domain object class has a mechanism defined for it, whenever an instance of that class is to be
created, an isomorphic copy of the mechanism must be created, with all connections maintained.

Chips provides a Mechanism Editor to define and modify the mechanism associated with a particular
subclass of DomainObject. The class MechanismEditor is a specialization of substrate with behavior
that supports the definition of mechanisms. When the Mechanism Editor is opened, the mechanism of
the selected domain object is displayed along with an internal connector for each physical connector
defined for the domain object. Physical connectors provide access to the domain object's internal
mechanism for other domain objects. These physical connectors are represented by instances of the
class InternalConnector. These instances set up a connection between the domain object's external
connectors and its internal mechanism.

When a domain object with a mechanism is sent the message ChangeOccurred, it forwards the
message to the appropriate instance of InternalConnector, which in turn sends it to the domain object's

that define the mechanism.

An example of the use of mechanisms is the class NANDGate, which was defined for our digital -ircuit
editor. Its display object is shown in figure 9.

Figure 9. The display object of the class NANDGate

Display objects of the class NANDGate have three physical connectors, two on the left for input and one
on the right for output. The class's behavior can be defined in terms of instances of two other classes,
ANDGate and NOTGate Figure 10 shows the mechanism of the class NANDGate

12

IIV." .".."..", w."."." .'". ,-".""""-'''""""":" / , - """ ,"" "''' "" "' . -,..•, +" "

Chips Technical Report

'.o2

Figure 10. The mechan.sm of the class NANDGate

Each physical connector of the class NANDGate is represented by an instance of InternalConnector,

shown in figure 10. The Mechanism Editor automatically positions the instances relative to where the
physical connector appears on the domain object's display object.

The user creates the mechanism for the selected domain object class by selecting instances of the
classes of domain objects that are to be included in its definition, dragging their display objects to an
appropriate position, and connecting them with wires. The mechanism may then be saved to the
domain object's class by selecting the Save Class Mechanism option from the substrate menu.

When an instance of NANDGate is used in a circuit, it processes signals sent to it by sending them to

the instances defining its internal mechanism, via its internal connections Figure I I shows a
NANDGate domain object in action.

a.

Figure !1. Example using the NAND Gate

3.6 Event Streams and Display Streams

Chips generalizes the input and output facilities of lnterlisp-D to include object-oriented event
streams and display streams, providing a straightforward way of performing IH) redirection

Instances of the class EventStream may be passed to some methods expecting input from the meu-,e or

keyboard, such as the method for dragging a displa object around the screen. prm. iding dirict 1-1

13

In.

PN
.%

Chips Technical Report

of the input from either the mouse or the keyboard. The default event stream is an instance of the
class EventStream, called Mouse, which polls the mouse each time it is asked to update itself This

class can be specialized to get coordinates from a file, calculate coordinates based on some
pre-determined path, poll the keyboard, etc.
Instances of the class DisplayStream, likewise, may be passed to certain methods that exptet a display

stream on which to perform output. One useful example of this is the class BufferedDisplayStream,
which, instead of doing output directly to the screen, does its output to a scratch bitmap and displays
on the screen when sent the message, Update.

Note: we have not developed display streams very much. They are included as a point of departure for
further exploration.

3.7 Saving Chips Classes

When a file that contains Chips classes is saved, certain values of instance variables and class
variables may need to be specially saved. Values such as bitmaps, instances, user-datatypes, arrays,
hash tables, windows, and circular list structures will not be saved correctly without special handling.
Chips defines several methods and functions that enable these kinds of values to be saved correctly.

For one of these values to be saved correctly, the instance or class variable that they are stored on must
have a property that designates them as special. The property name may be either Instances, Ugly, or

Horrible. If the property name is Instances, it designates some value of the instance or class variable

that it is stored on as an instance or a list structure containing instances. If the property is Ugly or
Horrible, it designates that some value of the instance or class variable that it is stor.%i on is some

other structure, such as a bitmap, user-datatype, array, or hash array, needs to be treated specially. If
a value is marked as Horrible, it may contain a circular structure; if it is marked Ugly, it may not.

Marking some value as Ugly results in a large speed and internal-storage advantage over marking it

as Horrible.

Each of these properties, Instances, Ugly, or Horrible, may have values that designate which values of

their instance or class variable are to be treated specially. If the value is Value, then the instance or

class variable value is treated specielly. If the value is All or Any, the instance or class variable value,

as well as any properties of the instance or class variable, are treated specially. If the value is some
other atom, it is treated as a property name, and that property of the instance or class variable is

treated specially. The value may also be a list containing any of the above values.

When a file containing Loops classes is saved, each class is sent the message FileOut to save itself to

ile. Chips specializes this method, in the metaclass UglyMeta, so that it checks each instance and

class variable to determine if any of its values are to be treated specially. When a Chips class (any
class which has ChipMeta as its metaclass) is sent the message FileOut, the message is intercepted by

UglyMeta (a super class of ChipMeta). This method calls the function AddlnstancesToFilevar, which

saves all values designated by the Instances property to the file variable of the ile being saved. It then

encodes all values marked by the Ugly or Horrible property by printing their values to a core file, using
HPRINT, and reading them back in, using BIN, and constructing a string representation, which is then

saved to the file.

When these files are loaded, the values marked as Ugly or Horrible must be converted back to their

original representation. This is done by printing the values to a core file, using BOUT, and read from

the core file using HREAD

14
, - . -..

Chips Technical Report

4. Chips Interactive Environment
Chips provides a powerful environment for interactively creating and modifying direct manipulation
interfaces. There are two paths for developing applications that use Chips. They can be used
interchangeably as convenience suggests. The first is through a Chips Browser. This browser
provides: access to the class definitions, editors for specific properties of classes, and access to the
taxonomic hierarchy of the classes of an application. The second is through the application's own
interface. There are a number of features that support direct access through the interface to
underlying data structures, functionality, and specific properties of an interface. This section
summarizes the features of the Chips interactive environme-'t.

4.1 Chips Icon

Both paths of interaction are accessible through the Chips Icon. When Chips is loaded, the Chips Icon
appears on the screen (see figure 1).

-. Left button: "Drag the icon"

chips Middle button: "Chips options"

Right button: "Window options"

Figure 1. The Chips icon and its mouse button options

Selecting the Chips Icon with the middle button presents a menu of Chips options, Create a substrate,
Browse a file, Browse Saving Options, and Edit Chips Icon.

Selecting Create a substrate creates a new instance of the class Substrate and sends it the message
Initialize which prompts for a region of the screen to display the new substrate.

Selecting Browse a file presents a menu of all the files on the system variable FILELST. Selecting a file
name from this menu creates an instance of the class ChipsBrowser that shows all of the classes
defined by that file. This browser may then be accessed interactively. This option has a submenu
associated with it with one selection, Browse object dependencies. Selecting this option presents a
menu of all files on the system variable FILELST. If a file name is selected, a browser of that file is
created, displaying the file name and all objects that are stored on that file's variable (see figure 2).

,1 Jo0e
CHIPSTO S CIretm:hen

'DemoDomnainObject

Figure 2. A browser showing the objects pointed to by the file CIIIPSTOYS

In this browser, nodes representing file name are display in bold font with a two pixel border around
the name, class names are displayed in bold font without a border, and instances are displa y_,d in a
regular font. Each node has several options available by selecting the node with the middle mouse
button pressed. These options are shown in figure 3.

15

Chips Technical Report

De acri ObeE dit

Figure 3. Options available from the object dependencies browser

Selecting Describe from this menu prints information about the selected node including what kind of

object it is and what files it is stored on.

Selecting Edit from this menu invokes the Interlisp-D editor DEdit on the definition of the object

wit the seece node

associated with the selected node.

Selecting Inspect from this menu creates an lnterlisp-D inspector, inspecting the object associated

withmoh smaintdbjode

Selecting Extend from this menu extends the browser to include objects pointed to by the selected node.

Selecting UnExtend from this menu removes all objects pointed to by the selected node from the

browser.

Selecting Browse Saving Options from the Chips Icon middle button menu presents a browser of saving

options that controls what actions are to occur when certain events occur during the use of Chips. This

browser is shown in Figure 4.

When Created

SWhen Named
i When Added to Substrate

n fm When Edited

bwProrpt for Name

IGenerate NameI Prompt for File

File in Default File

,File With Substrate
~Mark as Changed

Do Nothing

Figure 4. The Chips Saving Options Browser

The grid in the browser allows the user- to control what actions are to occur at specified events during
the use of Chips. The events are listed, horizontally, at the top of the browser while the actions to take
in response to these events are displayed vertically, to the right of the grid. Responses that are

. mutually exclusive are grouped with a vertical bar connecting the mutually exclusive responses.

16

"--. , _,-t_.-__.-_,-- ,-..-...........'......,,.,....'....-'.,.,...,.',.-,..............'.,........'...."-.".".."............

Chips Technical Report

The four events that are controlled with this browser are: When Created, When Named When Added

to Substrate, and When Edited.

When Created - whenever an instance of the class DomainObject, DisplayObject, Substrate or any of

their subclasses is created and initialized, the selected responses occur.

When Named - whenever a instance is named while using Chips, the selected responses occur.

When Added to Substrate - whenever a display object instance is added to a substrate, the selected

responses occur.

When Edited - whenever an instance is edited through a Chips menu, the selected responses occur

The responses that are controlled from this browser are Prompt for Name, Generate Name, Prom pt for

File, File in Default File, File With Substrate, Mark as Changed, and Do Nothing.

Prompt for Name - asks the user to enter a name for an object.

Generate Name - generates a name for an object using GENSYM and the class name of the object.

Prompt for File - asks the user to select a file in which to store the object.

File in Default File - stores the object in the default file; if the object is a class, it is stored in the file

CHIPSCLASSES, if it is an instance, it is stored in the file CHIPSINSTANCES.

File With Substrate - stores the object, usually a display object instance, in the same file as the

substrate it is displayed in.

Mark as Changed - marks an object as changed so that it will be recognized by the file package-

Do Nothing - does nothing in response to the selected event.

Selecting the option Edit Chips Icon invokes the Interlisp-D editor, DEdit on the class ChipsIcon.

4.2 The Chips Browser

Chips provides a graphical browser for a class hierarchy of Chips classes that supports the creation
and management of Chips files. It is called the Chips Browser (see figure 5).

ltern I n nnCctw

COCkrO4Ch

13 aon ~ -.- LibroOomnain~le ICC J- t~r

-- OenoO 4mObgect

Eld rOoffObI

Me€ChsmUan erOCObI

Figure 5. A Chips Browser

This browser provides a graphical display of the portion of the class inheritance lattice that is defined
by a particular file. Selecting the name of a class with the mouse produces a menu for editing different
aspects of the selected class.

This browser is a specialization of the Loops class FileBrowser The Loops browser provides options

that allow the interactive creation, modification, and examination of classes (see figure 6)

17

::,':,'..' ," ",..z'.:':" ' , Z % , .,.'_-."" -'.-." :, F ' -.- ".",.,.,,., % "¢,.,%.,"-"-,"-".

-W:~~~~~~~~V UK- .-- %N-JK -lw

Chips Technical Report

I~il~m \XMetlhorJ3 ,'FitMethocl',

Add (AddMeth d:
Delete 1Deiete ,'1eth o , TEditChipMl~ove (MoveMettho,.To) 'dtli

Instancefile P_,hil Copy (Copyt ,lethadTo) lmarngePlaneChip

PsReam (lena-me-ft/1thord),
f~i Edit'Ia s >

'FooChip

Figure 6. Browser options provided by the Loops file browser

In addition to these, we have added options specific to chips classes. These options are shown in figures
7 and 8.

Specialize
AdldNewMethod
SpecializeMethod
Add Display Object
Add Connection Capability
Add Mechanism Capability
DefRSM
AddSuper

BoxNodle AdcNewV
Methods (EditMethod) AddNewCV

P 5 F I Fr.- R YA ew
Delete (DeleteMethod) e

Move (MoveMethodTo)
Copy (CopyMethodTo) I
Rename (RenameMethod)P

0Edit (Edit,:a),*

Figure 7. Options available from the Add (AddMethod) submenu

BoxNode
Methods (EcitMethod) 0
Add (AddMethod)) Edit
Delete (DeleteMethod) 0cEdit!
Move (MoveMethod To) inspect
Copy (CopyMethod To) 0Edit Display Object
Rename Renameflethod . Edlit Response To Selection
11C,"11"" |r :lEdit Mechanism

-

Figure 8. Options available from the Edit (EditClass) submenu

There are several options that are specific to Chips, all to be used with subclasses of the class
DomainObject, including: Add Display Object, Add Connection Capability, Add Mechanism

Capability, Edit Display Object, Edit Response To Selection, and Edit Mechanism.

% Selecting Add Display Object creates an inspector that allows the user to define the new display object

that will be added to the selected domain object class. This browser is shown in figure 9.

I M* NIL

Class 0isplay0bject
figure PictureSpecification

Fmask PictureSpecification
map Picture3pecification

Figure 9. The Display Object Specifier

. .. . - -,, -. . - , . , - ' - . . . ' . - - - -- " . - ' - - -. " - - . : . -" " : - : -:-1. - - - , -.8. -' b : ' - - - -

%-V]-VV V W I- V

Chips Technical Report

Using this inspector, the user may specify the class of display object that is to be added to the selected
domain object class along with the tag that will be used to refer t- that display object and the classes of
picture specification that are to be used for the display object's figure, mask, and map. When the
display object is specified, it may be installed in the domain object class by selecting the inspector's
title bar with the middle button pressed and selecting Install from the menu that appears.

Selecting the option Add Connection Ability establishes connection capability for the selected domain
object class. When this option is selected, Chips attempts to add the class ConnectionMixin to the -K

supers list of the class. This is done by sending the class the message InstallSuper, which is defined by
the metaclass AddSuperMeta. This method expects that either the class or one of its super classes has
a CV that has the same name as the super class to be added. This CV should have two properties:
fileName, which stores the file that the super class is stored on, and selectors, which stores a list of the

messages that the super class implements. InstallSuper asks to make sure that the user wants to add

the super to the selected class. If so, it checks to see if the file that implements the super is loaded, by
sending the class the message FileLoaded?. If the file isn't loaded, it will load it. It then installs the
super in the super list of the class, copying any IVs with a property copyDown that has a non-NlI.

value. .K

In addition to explicitly requesting that a capability be added, if any message is sent to a domain object
instance that it does not understand, Chips checks to see if the message is one that would be
understood if a certain super were added to the supers list of the domain object. This is accomplished
with the AddSuperMeta class and the method DomainObject.MessageNotUnderstood. If a message is

sent to a domain object that it does not understand, the message MessageNotUnderstood is sent by
Loops to the object, which, in turn is intercepted by DomainObject.MessageNotUnderstood.

MessageNotUnderstood sends the message NewSuperSelector7 to the class of the domain object. This
message is implemented by the class AddSuperMeta and looks at the domain object's -lass for a CV

that has a selector on its selectors property that matches the message that was sent to the domain
object. If such a CV exists, the message InstallSuper is sent to the Domain object's class.

Selecting the option Add Mechanism Ability establishes mechanism capability for a class of domain
objects. When this option is selected, Chips attempts to add the class MechanismMixin to the supers
list of the domain object's class. If the class MechanismMixin is not loaded, Chips will ask the user

whether to load the file MECHANISMS which defines the classes, instances, methods, etc , that are
required to establish a nechanism. MechanismMixin is then added to the supers list. This is done

following the same proce. ire described above for ConnectionMixin

Selecting the option Edit Dis'lay Object allows the user to define how instances ofa domain object class
will display themselves in a substrate. When this option is selected, it presents a menu of all display
objects defined for the selected domain object class. If a display object is selected the display o)bject is
then edited, using the Display Editor If the selected display object has an instance of the class
DisplayEditor stored in its editor IV, that display editor is opened If not, a new instance of the class

DisplayEditor is created, stored in the editor IV of the display object, and opened In this case,

selecting Exit while using the Display Editor updates the displa. object associated with the domain

object class, so instances created from this class will subsequently reflect the changes made during

editing The Display Editor is discu.-.4d in detail at the end ot'this section

Selecting the option Edit Response To Selection .i ,,ws the user to defline the response to selecting a

particular displai object with the mm-,, ,'ur-lr hile 'hat dipla% object is dipla ved in a substrate
W hen this i)ptiomi t selvect.d, a u.,.nu ,f ,ill dipl.i , ict -diit ,d !')r the .l ctcd d(miain ohbjct is

19

Chips Technical Report

presente IF,)ne .s ie.ecea. -he Inter.IsD-D editor DEdit is invoked on the form that describes that
*.1 SOd , a) mect ! response to neiecton

Seiectirig tne opt.or. Ec - Mec,"anism aiows -ne user to edit the mechanism associated with the

-;eiected -ass)i aorra.r. .)o ec: \tecranisms pro% ide a way to describe the behavior of a class of
domain oojects n "er.s)t .r.tances ,t ,)tner ciasses of domain objects, as described above.

When this optior ze.ec'ea 'ne ;ser .s asked to sweep out a region of the screen' to display a

substrate, cal:ea "ne %Meca- ,- Ec,-or The Mecnanism Editor will contain the class's mechanism, if

one LS defineci

An option has been aacec to tne ;te bar menu of the Loops FileBrowser Add New Class Selecting

Adcl New Cass and skiding to the rg,.t see F:gure 10) presents a menu of Chips classes that wiil

frequently need to be speciaiizea, proving a straightforward way of creating new specializations and,
associating them with a particuiar ,ie When a class is selected, the user is asked to type in a name for
the new specialization, which .s 'hen created, having the selected Chips class in its supers list. When a
Chips class is specialized. all IVs of the specialized class that have a property copyDowr set to a

non-NIL value are copied along wtn their values to the new class. This is accomplished using the
metaclass CopyOnSpecialize with the method Specialize This method is a specialization of

ClassSpecialize

Recompute
AddPOot
Savevalue
PernoveFromB acllist
Change display mode
Add file to browser
Select File
Edit File Corns

it
Edit Functions Specialize Picture-pecfication

aEdit istances Specialize DCopay bect
Edoitpaiw pecialize Subsrat

Figure 10. Creating a specialization of a Chips class from the file browser.

4.3 Modifying an application through the development interface

* This section will discuss a) how a substrate manages the display of multiple, overlapping display

*: objects and b) the editing options available by selecting substrates and display objects.

. 4.3.1 Displaying overlapping display objects

.- To support the display of multiple, arbitrarily shaped display objects in a substrate, Chips creates the
"" illusion that display objects overlap one another, as though the screen had depth and some display

." objects were closer to the viewer than others. This overlapping is essentially 2 1/2 dimensional That
is, there is no sense of absolute distance between the display object and the viewer, only that certain

'* display objects are closer to the viewer than those that they overlap. Chips provides a sense of relative
depth, not absolute depth.

Each substrate instance stores a list of the display object instances it contains in the IV contents

They are stored in order, so that the topmost display object is on the front of the list. Each display

_ ,,- .. *.* : "- ::-,< . • 2/.-Y~ ,-Y-

Chips Technical Report

object stores an ordered list o" the display objects that it overlaps in an IV, occludedByMe, and an
ordered list of the display objects that overlap it, in an IV, called occludesMe When a substrate
instance redisplays its window, it clears the window, and traverses its contents in reverse order,
sending each display object the message Draw As mentioned in Chapter 3, display objects can be
irregularly shaped and may have holes in them.

When a display object is to move, it is sent the message PrepareToMove which, in turn, sends the
message DrawUnder, drawing all display objects that overlap the display object to a scratch bitmap It
then removes itself from all occludesMe and occludedByMe [Vs of the overlapping display objects, and
finally removes everything from its own occludesMe and occludedByMe IVs.

When a display object is placed in a substrate, it checks to see which display objects it overlaps and
updates itself and them accordingly, with the message InformThoselLandedOn. It also puts itself on
the front of the substrate's contents IV, sending the substrate instance the message AddlnFront.

Occlusion is maintained with respect to selection of a display object with the mouse cursor. When a
mouse button is pressed while the mouse cursor is in a substrate's window, the window's
BUTTONEVENTFN is called. The default BUTTONEVENTFN in Chips is ChipsEventFn. This function
sends the window's substrate instance the message GetObjectAt, which traverses the contents [V of
the substrate, in order, sending each display object the message OnYou? with the coordinates of the =

mouse cursor selection. If a display object was under the cursor, it is returned, otherwise the substrate
instance itself is returned. The instance that is returned is sent the message RespondToSelection.
The RespondToSelection method sends the selected instance the message GetPartAt with the
coordinates of selection. The method GetPartAt traverses the object's map and returns a tag,
indicating what the cursor was over when the mouse button was pressed. The RespondToSelectlon
message then looks at the eventResponses IV of the object to determine what to do in response to the
selection. The eventResponses IV stores a list of triples of the form:

(part howSelected whatToDo)

part is the name of a part of the instance, howSelected indicates the type of selection and is usually a
type of button, such as LEFT or MIDDLE, whatToDo is either an atom in which case it is treated as a
message name and is sent to the selected instance, or it is a form that is evaluated.

In addition to being arbitrarily shaped, display objects do not have to be entirely solid. It is possible to
define holes in the middle of a display object. This is also supported both visually and with respect to
selection with the mouse cursor.

Figure 11 shows a substrate with three display objects: the display object of the class ChocolateChip
which looks like a chocolate chip cookie, the display object of the class FooChip which looks sort of like
the man in the moon, and the display object of WasherChip which has a hole in the middle

21 0I

Chips Technical Report

Figure 11. A substrate with three overlapping display objects
In this figure, the WasherChip overlaps the ChocolateChip which in turn overlaps the FooChip. The

ChocolateChip is partially occluded by the WasherChip but can be seen through the hole in the
WasherChip. Selection of these display objects with the mouse cursor exactly corresponds to their
visual representation in the substrate. Selecting the part of the FooChip that is not occluded selects
this display object. Selecting any part of the WasherChip's display object selects it. Selecting any part
of the ChocolateChip that can be seen, including the part that is seen through the hole in the
WasherChip, selects it.

Substrates keep a list of the display object instances they contain. This list is ordered by depth; the
front-most display object instance is first. To redisplay the substrate window, the list is traversed in
reverse order so that the front most display object is displayed last. Thus, overlapping display object
instances give the illusion of depth as display object instances closer to the front occlude display objects
behind them. To determine which display object instance the mouse cursor is pointing to, the list is
searched in order. Thus, if display object instances overlap one another, the one closest to the front is
found first.

4.3.2 Interactive editing of display object instances

By default, Chips provides a number of options available through a display object on the screen. To
perform some operation on a display object or its associated domain object, the user merely selects that
display object with the mouse cursor. This section will discuss the default options that are available
for interacting with display objects and domain objects through their pictures on the screen.

The default response to left button mouse selection of a display object is to send that display object the
message Animate, which picks it up, attaches it to the mouse cursor and allows it to be dragged around
the screen. When a display object is picked up, it first comes to the top of whatever display objects may
have been overlapping it. It then follows the mouse cursor around the screen until another mouse
button is pressed. When a display object is put down, it will, by default, overlap any display objects
that are occupying the region it is placed in. Display objects may be dragged from one place in a
substrate to another or placed in any open substrate on the screen.

',t

Dragging maintains the illusion that the user is actually manipulating the objects represented by a
particular display object. The dragging animation is very smooth with no flicker and does not
obliterate the screen.

The method that implements dragging is called Animate. Animate provides hooks for redefining what
happens when dragging a display object. To use these hooks, the user needs to specialize one or more
methods for a new class of display object.

Chips provides several options for editing the properties and behavior of a display object and its
associated domain object. These are available by selecting a display object with the middle button and

22

o

Chips Technical Report

choosing the editing option from a menu. When the middle button is pressed, the display object is sent
the message OfferEditOptions, which presents the menu of options. These options are acquired hy

appending the results of sending the display object and its associated domain object the message
GetEditOptions. These options are roughly grouped into four categories- operations involving the
display object's properties and behavior, operations involving the associated domain object's properties
and behavior, operations involving the connections of a domain object, and operations invok, ing the
domain object's mechanism. Figure 12 shows the menu of editing options available for the di.play
object of an instance of the class MechanismDancerDomObj.

C, efete From ,uu trate

v,: 1 . to .3 :. ;e,: ,ic ,, r ition
lrag r-i r ,Da ect

Edit P e =z m.on :e o - eet ,:n7. ..Eit a Tnetn

H l,',1 e I .,.letno,: 1' ..l r u f,:,r E1i .r:,1
.
- 'j e

1-3me Oorn.3in ,-,ble,-t
.% '5 ' witc r, D e p i,.: ti o ri
•v 7 . n -3 e c t Do m a in :,o le ,r t
. $Send mne 3 3age to Domain ,]-,bje,:t

eConnc t
Destroy All Connect icr-3

.z Edit Connectio: nw E d it aConne i

lEdit Mecharii3m

Figure 12. The editing options menu for an instance of MechanismDancerDomObj

Editing options involving display objects

There are ten options that support editing the properties and behavior of display objects Delete from

Substrate, Move to a specific position, Drag Display Object, Inspect Display Object, Edit Display
Representation, Edit Response to Selection, Switch Tag, Name Display Object, Send Message to

Display Object, and Make Method Menu for Display Object.

Selecting the option Delete from Substrate deletes a display object from the substrate in which it is
displayed, by sending the display object the messae DeleteFromSubstrate Deleting a display object

erases it from the screen, displaying any display objects that it overlapped, maintaining, in turn, their
overlapping with other display objects in the substrate. It also removes it from the displayObjects IV
of its associated domain object instance.

Selecting the option Move to a specific position allows the user to specify coordinates within the same
window where the display object is to be moved. The user is prompted to enter the x and y coordinates

for the move, using the Interlisp-D function RNUMBER, and the display object then removes itself f'ronm

its current position and relocates in the position indicated by the entered coordinates, sending itself
the message Move.

2"1

.. , . - -

Chips Technical Report

Selecting the option Drag Display Object sends the message Animate to the display object, allowing it
to be picked up and dragged around the screen. Dragging is described in detail above Selecting this
option is the same as selecting the display object with the left button

Selecting the option Inspect Display Object invokes the Interlisp-D inspector on the selected display
object instance. The inspector is window-based and allows the user to examine and modify the
properties of a particular instance of a display object class. Figure 13 shows an inspector for the
display object of an instance of the class SquareChip

fIIeNime NIL
fi leComs NIL
ul IFiIe NIL

occ ludeByMe (#$MoveA,,yO I :lot 1 J,',:,' .5 I
occludesme NIL
,isp layStream {WINOW0}377,6Z34
event3tream NIL
figure *$SquareO i1S. yOb jectCoPyO823Figure
mask 0 .,aaroD I0 so IrO t 3a, Ob ef t'op j002 3 -irk
map (SSquareO isp laOb 3e,-tl'o)OZ 3M.5p0034.
position (213 38)
host ;,(2'ubstrite (255 .6243))
object *#sqauareChipOe2z
editor NIL
responsesToSelection ((map LEFT Animate) (map MIDOLE Offt
physicalConnectors NIL

Figure 13. The inspector

Selecting the option Edit Display Representation invokes the Display Editor on the selected display
object. The Display Editor will be discussed in detail below.

Selecting the option Edit Response to Selection invokes the Interlisp-D editor DEdit on a form that
defines the display object's response to selection with the mouse cursor. The form is a list of triples,
each consisting of the name of a map element of the display object, a type of mouse selection (usually
either LEFT or MIDDLE), and the action to take in response to selecting the particular map element
with the particular type of mouse selection. If the action is an atom, it is treated as a message name
that is sent in reponse to the particular combination; otherwise it is treated as a form to be evaluated.
The user may alter elements, add new elements, or delete existing elements from the list, altering the
display object's response to selection with the mouse cursor. Figure 14 below shows the response
description form for the display object of a MoveAwayChip.

(map LEFT Animate)
(map MIDDLE OfferEditOptions)
(center MIDDLE (. self Animate (t oinEvent3trem,

| 'oinOispStream)),j)

wr.

Figure 14. The response description for a display object

Selecting the option Switch Tag allows the user to switch the set of picture specification instances that

are used to display the selected display object. When this option is selected, a menu of all tags
associated with the selected display object is presented. If a tag is selected from this menu. the new

24

- - -

Chips Technical Report ,

picture specification instances are swapped in, becoming the new values of the figure, rask, and mar)

IVs of that display object.

Selecting the option Name Display Object allows the user to give some easily remembered name to a
particular display object instance.

Selecting the option Send Message to Display Object allows the user to send the selected display object
a iessage. When this option is selected, the user is prompted to enter the name of a message in the
substrate's prompt window This message is then sent to the display object, executing the associated
method.

Selecting the option Make Method Menu creates a menu of the methods associated with the selected
display object's class. This menu may then be used to edit particular methods with the Interlisp-D
editor.

Editing options involving domain objects

There are four options that support editing the properties and behavior of a display object's associated
domain object: Name Domain Object, Switch Depiction, Inspect Domain Object, and Send Message to
Domain Object.

Selecting the option Name Domain Object allows the user to give some easily remembered name to a
particular domain object instance.

Selecting the option Switch Depiction allows the user to switch display objects for a particular domain
object. When this option is selected, a menu of the display objects associated with the selected domain
object's class is presented, by sending the domain object the message AskDepiction. Selecting on of
these sends the display object the message ReplaceDepiction, deleting the current display object and
substituting the selected display object in the substrate at the same position. Figure 15, shows a
sequence of three substrates that demonstrates changing the display object of an instance of
DemoDomainObject.

-S -2

Figure 15. Changing the display object of DemoDomainObject

Selecting the option Inspect Domain Object invokes the lnterlisp-l) inspector on the domain object
instance associated with the selected display object. The inspector is window-ba>ed and allows the
user to examine and modify the properties ofa particular instance ofa domain ob ect c!&-s

Selecting the option Send Message to Domain Object allows the user to send a m,.-ae to the, doinain
object instance associated with the selected display object. When this option is select,.d, thei vr is
prompted to enter the name of a message in the substrate's prompt window T'is n,,sa , ;s then -ent
to the domain object, executing the associated method

Editing options involving Connections

If the domain object associated with the -vec'ed display object has co'nm-ic' l .o.ohini,. Tx

are available from the editing optlon ninu that su;pport creat1n. . '.nd: : ,*, .'

25

" . . . o . • - % . - . ., . • . . -. o- . ' % - . , . . . ' '° o ° % ° • °" . . , , . . ° . . ° . - .. ° " . .0'

Chips Technical Report

between domain objects: Connect, Destroy All Connections, Edit Connections, Edit a Connection, and
Delete a Connection.

Selecting the option Connect allows the user to interactively add a new connection for the domain
object associated with the selected display object. When this is selected, the user is prompted to enter
the name of the new connection and to select the participant in the connection The connection is then
established.

Selecting the option Destroy All Connections deletes all connections currently established for the
domain object associated with the selected display object.

Selecting the option Edit Connections allows the user to edit the connections of the domain object
associated with the selected display object. When this is selected, the lnterlisp-D inspector is invoked
on the instances of Connection currently defined for the domain object.

Selecting the option Edit a Connection allows the user to specify a particular instance of Connection to
be edited. When this option is selected, a menu is presented of all participants involved in connections
with the selected domain object. If one is selected, another menu of the names of all connections that
the selected domain object and the selected participant are involved in. If both participant and name
are specified, the Interlisp-D inspector is invoked on the instance of Connection indicated

Selecting the option Delete a Connection allows the user to interactively specify a particular
connection to be deleted. Specifying the connection is done as described above for Edit a Connection.
Once a connection has been specified, this connection is deleted from the domain object associated with
the selected display object.

Editing options involving Mechanisms

. If the domain object associated with the selected display object has mechanism capability, an option is
• .available from the editing options menu that supports creating and maintaining the domain object's

mechanism: Edit Mechanism. Selecting the option Edit Mechanism enables the user to edit the
mechanism that determines the selected domain object's behavior.

4.3.3 Options available by selecting a substrate

Chips provides a number of options that are available by selecting a substrate window. These options
allow the user to interactively examine and modify important properties of substrates.

New instances of domain object classes can be created and their display objects displayed in a
substrate by pressing a mouse button while the mouse cursor is in the background of a substrate
window. When the background is selected the message OfferNewDomainObject is sent to the
substrate instance. This method presents a menu, by sending the substrate instance the message
AskDomainObjectClass, which contains the names of all the classes of domain object currently defined
in the environment. If one is selected, an instance of that class is created and sent the message
Initialize. If there is more than one display object for the selected domain object, a menu of the display
objects is presented. If there is only one display object for the selected domain object, that one is used.
The display object is then displayed in the substrate's window When new classes of domain object are
defined, they are automatically added to the substrate's background menu. Figure 16 shows the
response to selecting in the background of a substrate

26

'VI-

TROY ~m". . 07-7-10 RXIM01JM ;1 W.1V kV- .~*.- ~,.,- '~V' ~ - ..

Chips Technical Report

I ra g e 1 1r-) i -

PiC hip
7 G t

Fiur o6.Tebauckgoneeuo usrt

shownA irn, hur 17.

Figue 16 The bkround meeen fa urate

shownrin figure 17

Loame
Coltn ew in _______3

Figure 17. TilearEu pin3fabtrate

Selecting the option Load allows the user to load a group of display objects from a file into the selected
substrate. When this option is selected, the substrate is sent the message Load, which prompts the
user to enter a file name. If a file name is entered, the ile is loaded into the environment and displaY
object instances stored on the file are displayed in the substrate's window

When an instance is loaded that has a value that is marked as Ugly or Horrible, such as at hitmiap, it is
necessarv to convert this from the form that was, Used to save it WVhen an in.stance is loaded frOM a

27

Chips Technical Report

file, the function DEFINST is called to create the instance DEFINST sends the message OldInstarce 0o
the instance after it is defined. Classes whose instances may have such values stored in some [V or IV
property have a super called UglyMixin. UglyMixin specializes the method OldInstarce to check the
new instance for values marked as Horrible or Ugly

To designate that a particular value is Horrible or Ugly, the IV containing the value should have a
property Horrible or Ugly, which may have as its value one of the following: Value, which designates
the IV value as the ugly or horrible structure, All or Any, which designates that the IV value and all of
the IV's properties have a structure that is horrible or ugly, a property name, which designates a
specific property as horrible or ugly, or a list containing any of the above values If a value is
designated as Ugly, it is assumed to not have circular structures; a value that is marked as Horrile
may have circular structures. Marking something Ugly reslts in a large speed and internal-storage
advantage over marking it as Horrible. When a horrible or ugly value is encountered, the method
UglyMixin.Oldlnstance decodes the value by using BOUT to write the value to a core file and then
reading it from the core file using HREAD

After each instance is read, its host IV is set to the substrate it is loaded into, its displayStream IV is
set to the substrate's window, and each instance is added to the contents IV of the substrate The
window is then redisplayed.

Selecting the option Collect new instances allows the user to associate the substrate and all display
objects it contains with a particular file, placing all instances on the files file variable When this

o" option is selected, the user is asked to specify a file to save the substrate and its display objects on
These instances are then added to the file variable of the specified file.

Selecting the option Browse Dependencies creates a browser window with one node representing the
substrate. This node can then be expanded further to examine the objects pointed to by the substrate
This can be useful to discover exactly what will be saved to a file when the substrate is saved.

Selecting the option Save contents allows the user to save the display objects cortained in the selected
substrate and their associated domain objects to a file. When this option is chosen, the user is
prompted to enter a file name to save to. If one is specified, the contents are saved to a file. They may
be loaded into another substrate later using the Load option. Saving display object instances mean
that picture specification instances must be saved as well Since picture specification instances
typically have bitmaps as values of their instance variables, these values will need to be encoded

" aefore saving them to a file. This is accomplished by the method UglyMixin.FileOut. FileOut is a
specialization of Object. FileOut which encodes values that are marked as Ugly or Horrible It does this
by writing the values to a core file with HPRINT and reading them in using BIN and converting them to

a string before it prints them to a file. Classes whose instances may store these values, such as
PictureSpecification, have UglyMixin as a super class.

The Save contents and substrate option is available by selecting the Save contents option, sliding to
the right, and selecting it from the submenu that appears. The user will be prompted to enter a file
name. If one is specified, the substrate and all of its contents will be saved to the file. When this
option is selected, a description of the substrate's window is also saved to the file so that the window
can be recreated with all its properties intact.

Selecting the option Inspect invokes the Interlisp-D inspector on the selected substrate's instance

• 'Selecting the option Edit Response to Selection invokes the Interlisp-D editor DEdit on a form that
defines the substrate's response to selection with the mouse cursor The form is identical to the Form

28

. L." .

Chips Technical Report

described above for display objects. Figure 18 below shows a sample response description form for a -.
substrate.

k Tit leuOrB-Dr, er LEF- _If1 !' I " .I) E ir, ,

T t 1 ?J1)r e, -)r,I r M 10OLE -4 .E 1r ir 1~ 11

i 3: B kground LEFT !ff.5' ,;~ ..:m
n .,:iFgro)und i MIDOLE ,,f" rN ',Zn p,

w-I

Figure 18. The response description for a substrate

Selecting the option Clear Substrate deletes all the display objects from a substrate and updates the 1%
display.

Selecting the option Name allows the user to give some easily remembered name to a particular -

substrate instance.

Selecting the option Send allows the user to send a message to the selected substrate When this
option is selected the user is prompted to enter a message name. If one is specified, that message is
sent to the substrate and the corresponding method executed.

There are two additionai options available by selecting the window's title bar with the middle mouse
button pressed: Edit Window and Edit Button Event Function.

Selecting Edit Window invokes the Window Description Editor, a modified version of the Interlisp-D
Inspector, allowing the properties of the substrate's window to be interactively modified. This
inspector allows window properties to be interactively changed and the results seen immediately The
Window Description Editor is shown in Figure 19.

.''c r -rl, " -'l,.Ti

* '. .:

............... >:

Figure 19. The W'iNrdow Descriptior Editor

29

.%..%

I'II'ji IW S .

Chips Technical Report

Selecting Edit Button Event Function invokes the Interlisp-D editor DEdit on the function that
determines the window's response to selection with the mouse cursor. The default button event
function, ChipsEventFn, merely sends the message RespondToSelection to the object that was selected

with the mouse cursor. This enables the user to control responses to selection through the menu
option, Edit Response to Selection, provided for display objects and substrates. Editing the button
event function directly may disable this ability but is provided to allow for more flexible determination

of a window's response to selection.

4.3.4 The Display Editor

The Display Editor allows the user to interactively design a display object. This is done by using a
modified version of the Interlisp-D graphical editor, Sketch, to draw what the display object should
look like when displayed on the screen. Using the Display Editor, the user can define both what the
display object will look like and its mouse-sensitive areas. It also provides a way to define alternate
sets of picture specification instances for the display object and to establish a mouse-sensitive
subregion as a physical connector. The Display Editor is shown in figure 20.

Descrioe Delete
Control Panel . Move >

Copy
menu fiueCha es

mask
map

arf

d efault Main
fccI0 * menu

Group
UnGroup

Image window ' Undo 1
Defaults 1
Gricl
Move view
HarclCopy
Put

E I< t

Figure 20. The Display Editor

Instances of the class DisplayEditor are cached on the editor IV of the display object that is edited.

Each display object has at least three pictures associated with it: the figure, mask, and map. The
figure picture describes what the display object will look like on the screen. The mask picture
describes which parts of the display object are opaque. The map picture describes what part of a
display object may be selected with the mouse cursor.

The main menu of the Display Editor provides graphical primitives such as circles, polygons, curves,

and closed curves plus simple operations for manipulating these graphical objects. The main menu
can be seen to the right of the main window in figure 20.

The Display Editor adds three options to the main Sketch menu: Move to picture and Copy to picture,

both available in the submenu of their corresponding main menu selections, and Exit When one of
Move to picture or Copy to picture is selected, a menu of all the pictures currently defined for the

30

.....................................%./. . . .

- - - ~*~ * -

Chips Technical Report

display object is presented. If one is selected, the user is then asked to select the elements to copy or
move. If one or more are selected, they are then moved or copied to the selected picture.

The exiting options are Exit and Quit. Exit saves the sketches to the editRepresentation IV of the
picture specifications of the display object being edited, creates a bitmap from the sketches, and
updates the offset of the picture specification to represent the offset of the region occupied by the
picture's sketch from the largest region occupied by the sketches of alI pictures Quit stops he editing.
leaving the picture specifications as they were before editing.

The Display Editor also provides a control panel for moving between the various pictures of a display
object, for creating new mouse-sensitive subregions, for switching between various sets of pictures
defined for the display object, and for adding new sets of pictures to the display object This is shown in
figure 20 to the left of the main window.

The control panel menu is split into three parts. The top part is the option Describe which prints
information in the User Exec window describing the display object and where it came from.

The next part of the control panel menu is the Pictures Menu. This allows the user to switch between
pictures by selecting a name with the left button. Selecting a picture from the control panel with the
middle mouse button pressed presents several other options. Each picture has two options: Display
picture and Edit picture. Selecting Display picture displays the selected picture in the background of

the picture being edited, in gray. This is often useful for lining up parts of two separate planes.
Selecting Edit picture makes the selected picture the picture being edited.

The user can define new pictures, representing mouse-sensitive subregions, for a display object. The
map and subregions are stored in the tree form used by the map of a display object. Their position in
the tree is represented in the control panel by indentation, those things indented further to the right
indicate that they are at a lower level of the tree. To add a new mouse-sensitive subregion, the user
selects the map or an existing subregion from the control panel with the middle mouse button pressed.
This presents a menu with several options, including Subdivide picture. If this option is selected, the
user is prompted to enter a name for the new subregion, and a new subregion picture is created, nested
within the selected region.

A subregion picture can be deleted by selecting it with the middle mouse button pressed and selecting
Delete picture from the menu that appears.

A subregion plane can be established as a physical connector by selecting Label Position from the
middle button menu. When this option is selected, the user is prompted to select a position in the
Sketch that will serve as physical connector position for this picture This will add the picture's name
to the physicalConnectors IV of the display object being edited when the Display Editor is exited.

The next part of the control panel menu is the Tags Menu. This menu allows the user to switch
between editing different sets of pictures that are defined for the display object. To select a porticular
set of pictures for editing, its tag is selected from the Tags Menu with the left button.

There are three options available for tags by selecting a particular tag with the middle mouse button
pressed: Add a tag, Delete, and Copy Tag Selecting Add a tag prompts the user to enter a name for a

new tag and then creates a new set of pictures for the display object Selecting De!ete deletes thp,

selected tag from the display object's definition Copy Tag allows the user to copy an entire set of
pictures to another set all at once. This can be useful if two sets of'pictures are to be most the sa mw,
with only a few differences

31

~ ~ K ~ -

'I-L VW, W - W W VVVWbJ% VV .% % N . W-T-R . W-Xwpv UJ WV -%w U"I .~r - W"~*

Chips Technical Report

Pictures are drawn for each display object by selecting graphical primitives from the main menu and
then describing their sizes and where they are to be placed using the mouse cursor.

7

3

43

Chips Technical Report

5. A Session with Chips
In this section, we will describe a sample interaction with Chips. We will go through the creation ofia
simple class of domain object, called a FaceDomainObj, to demonstrate the interactive facilities tr

creating and modifying part of an interface.

5.1 Creating a new domain object

To create a new domain object class a programmer first specializes the class DomainObject. This is

done from a Chips Browser, selecting Add New Class from the title bar menu, sliding to the right, and

selecting Specialize Domain Object from the menu that appears. The selection is shown in figure 1

-- E.

E

Figure 1. Specializing the class DomainObject from the browser

This creates the new class, FaceDomainObj. This class will inherit the functionalitv and properties

needed by objects with graphical images.

5.2 Editing the display object of a class of domain object

Once this is done, a display object can be defined for this class of domain object and edited using the
Display Editor. First, to create the new display object, we select Add Domain Object from the Chips

browser (see figure 2).

E Vl E 1l':a .

Figure 2. Adding a new display object

This creates an inspector that we will use to define our new display object. Since this new display
object will use the default properties, we need only declare the tag that we will use to refer to the

display object and then install the new display object by selecting Install from the title bar menu of the

inspector (see igure 3).

L& a. -: ,,:,'

00v~~ ~ CC ;(,MDJ

I - , 0 1 -.p 1 . .i.Ib I ei L -t m

f . ' I .P 1,: ture Pe,:I t 1 n

M a - 1 P , ture'o,,: if 1 3-t i,:,n

Figure3. Installing a new display object with the Display Object Specfier

w3 ec e

.i. -t

r- , I , P i . r ,t I I I ' N. II I "I-tI I 1I
I
Iii

I
I l ' -Ii

I
I Iii

'i ,' '! .,= , '." _" '.'".Y ," " "__-
" '

" r ' '" P' ' ,. .u .'-'. ': "., i ,r- _- : " * " - , -t-i -

Chips Technical Report

Next, we will edit the way our new display object looks using the Display Editor. To do this, we select
Edit Display Object from the Chips Browser (figure 4).

i ~~~~~~C -eo C ee+' ,:3 E ,ecz .0,

Figure 4. Invoking the Display Editor from the browser

5.2.1 Using the Display Editor

The Display Editor is a modified version of the Interlisp-D graphical editor, Sketch. It provides an
interactive way to draw and edit pictures (figure 5).

Plane selector menu
M&Sk

Command menu

Image window ...

Figure 5. The Display Editor

5.2.2 Defining the figure picture of a display object

Using the graphical editor, we will first draw the figure for the display object of the class
FaceDomainObj. This figure will consist of a circle for the outline of the face, two filled circles for the
eyes, and two curves for the nose and mouth. The completed figure is shown in figure 6.

P,

Figure 6. The figure picture of the display object of FaceDomain~bJ

* 5.2.3 Defining the mask picture of a display object
* Next, we will define the mask picture of our display object. The easiest way to do this is to copy the
* outline from the figure picture to the mask picture This is done by selecting the Copy option from the

34

,1 W,- I: %

Chips Technical Report

main menu, sliding to the right and selecting Copy to picture from the submenu that appears This

presents a menu of pictures currently defined for this display object. Selecting mask from this menu

establishes it as the picture to be copied to. We may then select any of the graphical primitives of)ur

figure to be copied. We select the circle that defines the outline of our display object.

We now switch to editing the mask picture by selecting mask from the control panel. The circle that

we copied from the figure is the only thing currently defined for this picture If this circle is filled in
completely, the display object will be completely opaque. We'll just fill in part of the circle to
demonstrate how to make part of a display object transparent. The completed mask picture is shown
in figure 7.

.:I.

Opaque parts

Transparent part

Figure 7. The mask picture of the display object of FaceDomainObj

5.2.4 Defining the map picture of a display object

Next we'll define the map picture of our display object. To do this, the outline i copied to the map
picture using the procedure described above.

We switch to the map picture by selecting map from the control panel Since we want to be able to

button on the entire display object, the outline will be filled entirely The completed map picture is
shown in figure 8.

C'a;

f~g.

-400

Figure 8. The map picture of the display object of FaceDomainObj

That completely defines our display object. Our display object is now available for use To continu,
we select Exit from the main menu, saving the definition of the display object to its PictureSpecification

instances

:35

Chips Technical Report

5.3 Using a domain object with a substrate
To use this domain object, we will need a substrate in which to place it. We can get a new substrate byselecting the Chips Icon with the middle button and selecting Create a substrate from the menu that
appears (figure 9).

(Chips)

Browse a file
Browse Saving Options
Edit ,-hips conJ

Figure 9. Creating a new substrate using the Chips con
Selecting in the background of this new substrate presents a menu of all domain objects currentlydefined in the environment (figure 10). You will notice that FaceDomainObj has been automatically
added to this menu.

"a.Oom ,) le C

Figure 10. The default background menu of a substrate
Selecting FaceDomainObj from this menu creates a new instance of the FaceDomainOb class and
places its display object in the substrate. We can create as many face chips as we want and place theirdisplay objects in the substrate. Three face chip display objects are shown in figure 11 I[n this figure,Face Domain Object Number 2 is overlapping Face Domain Object Number 3. Notice that Number 2 is
partially transparent, revealing part of Number 3 around the edges. This is a result of how we defined
our mask picture.

36

It-.-

Chips Technical Report

EMT -1M IFace Domain
Object 2

00..

Face Domain %
Object 3

Face Domain Object 1

Figure 11. Three Faces in a substrate

Selecting a display object with the left button picks it up and drags it, following the cursor until
another button is pressed. Display objects may be put down anywhere in the sul- trate or in any other
open substrate on the screen. Selecting a display object with-the middle button provide s a menu of
options that allow a user to edit various aspects of the display object and its associated domain object
(figure 12). One option, Edit Display Representation allows the user to reenter the Display Editor,
changing any of the existing pictures or adding pictures to the display object We will add a picture
that declares a different button response for part of the display object. We will declare that s;electingz
one of the eyes of this display object sends the message Ouch to the domain object

.. . .. "e ... Obeect .-.-,, -., , .,

Figure 12. Selecting Edit Display Representation from the middle button menu ofa display object

5.4 Interactively changing a display object

We want to define a new picture for this display object that will define an additional rhouse-rsnsitie
region. To add this picture, we select map from the control panel with the middle mouse buttonf
pressed and then select Subdivide picture from the menu that appears (bigure 13)

317

%+ V.

Chips Technical Report

S

-OIL Joe- 0 *

, ,'

P+o + .,+ I

Figure 13. Adding a new picture to the display object of FaceDomainObj

The user is then prompted to enter a name for this picture. The Display Editor creates a new picture
"" called eyes that will be used to draw the new mouse-sensitive region for the display object. It also adds

the name eyes to the control panel. To define this picture, we need only copy the eyes from the figure

picture to the eyes picture. Copying is done as described above. The completed eyes picture is shown
in figure 14 below. Note that the eyes picture does not define the visual appearance of the eyes, which
is done by the figure picture, but merely defines a new mouse-sensitive region.

movkv

C04

Eyes t

Figure 14. The eyes picture of the display object of FaceDamai nObj.

Exiting the editor redefines our display object, defining a new mouse-sensitive region. To use this
mouse-sensitive region, we must alter the display object's response to selection with the mouse cursor,
This is done by selecting the display object with the middle mouse button pressed and selecting Edit
Response to Selection from the menu that appears. This invokes the Interlisp-D editor DEdit on a form
that describes how this display object is to respond to selection. We will add an expression to this form
that tells the display object to send the message Ouch to its associated domain object whenever one of
its eyes are selected. Figure 15 shows this form.

38

- .. t +

EWWiFJ--W 'E", -VW ~. :v.w.w17.W.~~~r~ 'w~'~~.'P i .WV .~* -

Chips Technical Report

Figue 1. Edtin theresonseto ,elctio fom fo a isply ojec

Whenan ye s slectd fom ne f th faes n or -;bstate th mesageOuc is- en totha dwa'

igRe 5 dtn h esponse to skto omfradslyojc

selection- -

Figure 16. Selecting an eye of the display object of a face domain object

5.5 Conclusion

As you can see, using Chips, it is quite easy to define what a piece of your interface looks l ike and to
determine its response to selection with the mouse cursor Now that we have gone this far, it is easv to
go ahead and develop the domain object's functionality more fully using the display object on the
screen as the access point. The display object's selection response can be changed ineact iv The
way the display object looks can be changed by changing the drawing The internal data structures
and the methods defining a domain object's behavior can be accessed interactively In short, the us-er
interface can be quickly and easily modified.

39.

Chips Technical Report

44

Ji

Chips Technical Report

References
Bobrow. D (1 and Stefik, Nl The Loops manual Tech Note KB1 V LSI 31 1:3. Xerox Pil Al to
Research Ceiter, Palo Alto, CA, 1981

Bonar, .1 and Cunningham , R. Bridge: An Intelliigent Tuator for Thinking, Ii)t l'ror;imliriL In
NVew Horizons in Intellige'nt Tutoring, edited by .John Self, 1986

Borning, A. The programiing language aspects of Thing I ah, a con~stra in ol irited ain i Ltit in
laboratory. .ACM Trans. Program. Lang Syvst. 3, -4 (Oct. 1981), .353-387

Duisherg, R.. Animated graphical interfaces using temporal constraint-; In forton Faucto)rs in
Computing S-ystems: CHII'86 Conference Proceedings (Boston, %TA). A('\I, New Yiork, 19863. pp 833

Goldberg, A. J , and Robson, D. Smahltalk-80: the Languag' and Its Impl,.'m.'ntation, :\ddz~on 'AIVi-,

Reading, MIA, 1983.

Hutchins. E , Ilollan, .J , and Norman, D. Direct Mlanipulation Interfiwes. I 'srr ('.'nt,'r,'d
Design, edited by Donald Norman an Stephen Draper, Lawrence Earlham Ascae, llsa N.),
1986

Lesgold, A ,Bonar,J. , and Ivill,J.. Toward Intelligent Systems for 'es.im nvrivo Pttbur:
Learning Research and Development Center Technical Report ONR/l.SP I. MIarch 198.

Norman, 1) [Design principles for human-comnputer interfaces In Human A acto)rs in ('ompatiri4

Systems CIll'S3 Conference Proceedings (Boston, MIA). ACM%, New York, 198:3, pp lI 1)

Rosson, '*1. B3 , Mlaass, S., and Kellogg, W. A., Designing for Designers An Analsi of lDsign IPra.ct ice
in the Real World In Hluman Factors in Computing S - stems and Graphic's Intorfi, '.S7 Uin/',r,'nc-'
Proceedings (Toronto, Canada). ACM, New York, 1987, pp. 1374-142.

Sannella, 'v , Interlisp-D Reference Mvanual. Xerox Artificial Intel ligence Svstems, Pasadena. CA,.
Oct. 1985

SchulItz, -J persona! communication, 1987.0

Sheil, B Power Tools for Programmers, Data mation Magazine, Feb 1983

Stefik, N1., Bobrow, D., Mvittal, S., and Conway, L. Knowledge Programming in Loops: Report on an
Experimental Course, A[Magazine, Vol 4, No. 3, Fall 1983, pp. 3-13.

0:-

Chips Technical Report
w.

C,.

U

Ru

'p

'C

Ru.
'a.

a.

'a

A

CC

'a

-C.

'S.

'p

Ru

a-'

a,

42

K.'. - . - ~ .. *

Chips Technical Report

Appendix A: Special Programming Techniques
Several aspects of the Chips program code take ,d an tageit" unique ftatur,' of an open Iai~p- i .. (

environment. While the techniques described in !hi> -ection are nit par, ot' Chip,. per v,. he.% fr,-
interesting and generally useful

p.l

A.1 A General Caching Function
P%

Chips uses a function called CacheResults to be used with function, that hav, no 'ide efTect..; except
perhaps storage allocation) and consume large amounts of time or space to compute CacheResilts,
takes a function and its arguments and returns the result of appl ing the funct in to its arguinent:..
However if the same function and arguments are supplied to CacheResu ts algn. it simply return the
same result it returned previously. This function is often used for pop up menus Creating pp op
menus is slow and it consumes large amounts of storage

A.2 Self-Inspecting Code

When the programmer defines a new subclass of Chip, the mnenu w h,, e ltems are all the -nbc .

Chip becomes obsolete There are three wavs of'dealing with this one, ignore the pr,,blem ande, th.,,

programmer fix this menu by hand, two, modify the method for defining a new subclass sio that .t
updates the menu or in some way records the fact that the menu needs to he updated, or three, haye
the function that produces the menu check what classes are current! defined and if new ,ones have
appeared, create a new menu, otherwise use the old one

Using the cache and scheme three in the preceding paragraph, it is tri\vial to crfte tne ,n> thi'
automatically update themselves only when necessary When a menu is neded, the Ii t,,fittn' tla,
should be on the menu is used with CacheResults A new menu will be created ,n 'l, if the' i>! 1,

different

Schemes like this simplify the code The programmer need not remember to update the Iit ift,.r

defining a new class, the system notices automatically

A.3 Fast Bitmap Intersection

Frequently direct manipulation interfaces need to determine whether irregularly shaped objecits
overlap It is possible to take advantage of the fact that BITBLT is a very fast operation on Xerox 1I N)O
Series workstations The shadow bitmap and the relative displacement of one obj c, ct from the ,ther
are used in a series of four BITBLT operations, and one BITBLT like operat;,1 to a -cratch hit,-nap

Figure 1 illustrates the procedure

0

S
41

\ppnd 'ni I

'.• .- " . ." -" .","" "..."."..-... ." '... .. '. . ,,,'" .- - . *.:.. -, .-. .- . .- '..:. . .'

-Y ~ ~ ~ ~~- -XVP% RIIVL. V. D

I I W r . , - V -TYL'r 7 3- .- X- Jr, : , u - , -. , "W ',- r : -

Ile
Chips Technical Report

Shadow A

Region occupied by

Shadow ' and Shadow 2
(not constructed)

Procedure for Intersecting Bitmaps

1 Clear the scratch bitmap. 2 Paint Shadow A.

3 Erase Shadow B. 4 Invert Shadow A.

Figure 1. Intersecting bitmaps

If the scratch bitmap is blank after this procedure is executed then the two objects do not overlap. If
the scratch bitmap is not blank then the black areas will be the areas that are common to both
shadows with the given relative displacement.

It is important to note that it is not efficient to use the Interlisp-D function BITMAPBIT to scan for black

pixels Chips providc; a function that does this scan efficiently called \BITMAPCLEARP.

A.4 The EditWhen Macro

The EditWhen macro is used throughout Chips to provide uniform access to the underlying code of the
interface. The macro itself is very simple and is described below

(EditWhen keyNarneorExpr who) [Macro]

Parameters:

keyNameorExpr -either the name of a key (on the keyboard) or an expression

who - the name of a function or method

If keyNameorExpr is the name of a key, determines if the key is pressed or el;e keyNameorExpr 1
evaluated. If the key is pressed or the expression evaluates to a non-NIL value, whichever the case,

Appendix2A

... ., r -. .. " . ' - '..

Chips Tecimnical Report

the function or method who is entered with all bindings set to their values during evaluation Upon
exiting the editor, evaluation proceeds from the point of entry

EditWhen basically allows a user to set up a conditional breakpoint in the code We ha% e used ti:
macro to provide a uniform interface to the code of Chips Throughout Chips we have srategica,.w
hope) placed calls to EditWhen that look like the following:

(EditWhen OPEN functlonOrMethodName

This allows a new user of Chips to find out about the code that is used to perform variu> interface
functions by performing whatever action that he or she is interested in while holding down the OPEN
key So for example to examine the machinery behind figuring out how Chips deterrnin,,s wh'al
graphical objects are selected by pressing a mouse button, the user needs only hold down the OPEN Mo%
and then select a display object, a substrate, or whatever, with the mouse curor Tis wifl ucce> V U -C 1

open each function or method as it is called, allowing the user to examine t,e functi,n or me)I- ,d andi
then proceed by exiting the editor, continuing to hold down the OPEN key We hope this i>' i:,('1P
people become familiar with the underlying code of Chips

A plend i X3A

%

4~

A

Chips Technical Report

a

F.
S.

N

C.

'p.
A'.

F

- N

Cr

.2-

.5'
5'

'V.

*1

5-

5-

5.
Si.

5-

.5-

5-

S..

C"

'C

I'.'

A
.4.5
Cd..
A
'4
C?,

0~

S.

S.
A p pen di x4A

'SC

.5

.5

Chips Technical Report

Appendix B: Applications
Digital Circuit Editor and Simulator

A simple editor and simulator for digital circuits was created to help develop and demonstrate Chips
See figure 1 below (readers familiar with electric circuits may notice that the ground is missnnl .-(,

Many common inte,,rated circuit components are defined, including A.\ND gates, OR gates. NOT l
gates, NAND gates, signa! sources, wires, and switches. Creating the circuit editor was easy - once
classes for circuit components were defined and their schematics were drawn - all that was required
to build a circuit editor were a handful of methods for interactively connecting components with wires
The inputioutput behavior of the primitive gates are specified as a simple logical eprecsoion in I.isp .
The input/output behavior of the NAND gate is defined using a circuit consistun, ,f an AN1) Tate
wired to a NOT gate. Thus demonstrating that new components, like the NANI) ,ate, can h, diltred
completely interactively without programming using the circuit editor and other editors prA ided h.%
Chips. Signal propagation is implemented as a discrete event simulation When a clrcui! cimp ,rout
changes state, it recomputes its outputs and if they have changed, it signals the , hj,.c it i. cfn,."4,l .
to. Each signal is considered an event, and is placed in a global event queue b. sendin4' A c,,-a ,
an event manager object. The event manager dispatches events in its own process- 5o various contr'i
regimes can be implemented.

ii-V

- .

-- q,

(OIR (ORH (ANUI pq) r) (ANO) (N (Ril t)1) I1

Figure 1.. digital circuit

A.\perldixl 1

_e- a, ..r d.--

Chips Technical Report

Bridge

Bridge (Bonar and Cunningham, 19861 is an Intelligent Tutoring System to teach introductory
programming. Bridge teaches programming based on the idea of programming plans. Programming
plans model the conceptual understanding which allows experienced programmers to combine several
programming language constructs into common idioms. These plans are the same for any procedural
programming language, though corresponding code would be slightly different. For example, when
writing a program it is often necessary to keep a running count of something. The idea of keeping a

count always has certain features associated with it, such as incrementing the counter and using the
value of the counter.

Bridge teaches programming by "bridging the gap" between a student's understanding of specifying
procedures in a natural language like English and the understanding needed to write a procedure in a
programming language. The student works through three phases to specify a procedure in Bridge a
natural language phase, a programming plans phase, and a programming language phase. The
student may request feedback about a proposed solution at any time.

In Phase I of Bridge, (see figure 2), the student constructs a solution to a programming problem by
selecting and moving English phrases selected from a menu. Each phrase is a chip. These chips
format themselves when the student moves them, highlight themselves at various times, and
disappear when the student discards them.

Congratulatons! Your
M g x a u is m r e Y fo r- - - - - - -

ptogsainii 'O r o,i --- --

Wth Program" o o on to --

Phasel vii
e WhDoeWhProgram

Instrudions A

Write a progr4im r hatl cis (he
uset if he/she would likemo r
add Iro irue geus. It the user,

rapore is 'ys It r d in Ask ... if he wants to add two integes
twO inteers. compite I he slim.d

4nd prn r(u the reult. If the rnponse
uses' response is 'no". prInt Read in... an integer
ou a thank you iny way Read in .. . Iinteger

mese. mp4. the am
PA. th sum

rmt sum- .Pun, he ll

PY~utt.Pnt . . Thik you any,,"
output

GMt
Read fn

lit t respone is yes ._.

Figure 2. Phase 1 of Bridge

In Phase 2, (see figure 3), the student constructs a solution to the problem using a visual programming
language (VPL). Each icon in the VPL corresponds to a programming plan. The student builds a
solution by assembling the programming plans much like putting together a jigsaw puzzle

Appendix2B

Chips Technical Report

LDotie with progi aii.
I nstrriitli.)is ~p

Am Q R III, inrni'
St Ilserc

(I w~d ii here her-Aiise

Aie~oherPllp

1-... aiioIier lait

Input *'Pi

Ask Ai he wants to add tvM integer%
II Ow responlse is yes. .upt

Rad in ... aniteger II
Rad inm . . ninfteger+

Conriute .. the sam z -~

otherwise -

-~ . Output

Figure 3. Phase 2 of Bridge

In Phase 3, (see fig-ure 4), the student constructs a solution to the problem in Pascal, using, a syntax
directed editor.

.3Appendix:13 A

% -_'- - -.- - -.'

.IX C ~)Y ~ ,U) . U~ .U~r .u~i ''~V~ '9T V-" Y -Y Y I:.X X y-y' ~.

Chips Technical Report

or

'I. leas

Pirn Piaral

Erw P'-to

-i:7

Fiur 4. Phse3ofB'g
We used Chps to deveoptevsa rgamn agug nPae2o rde

'R.

them together by fitting a tab from one plan into a slot in another plan.

Different parts of the plans respond differently to selection by the mouse cursor To use the value from
one plan in another part of the program, the student selects the box marked Value. When this is done,
an instance of the class ValueChip is created, attached to the cursor, and may then be placed inside

- another plan. Figure 5 shows a ValueChip instance that is about to be placed inside the Output Plan.

Appendix4B

Chips Technical Report

Prompt Plan

Conditional Plan

Input Output
PPlanPlan

Input
Plan

,7-

Compute
Plan

OutpUt "

Plan

Figure 5. The Visual Programming Language from Phase 2 of Bridge

Once the student has constructed a proposed solution to the problem, the program may be executed.
As each plan is executed, it inverts. Also, as values are updated, these values animate throughout the
program to the location of their respective variables. Thus the VPL provides the student with an
explicit view of both the control flow and the data flow during execution. 0

This application proved especially difficult because so little is known about the effective use of visual
programming languages. Chips enabled us to do extensive iterative design of the language,
developing six significantly different versions in three months.

S

Appendix5i q

* .- I..

,.', .- ,- , . :. . .?. . , -.. .P . * . . ., , , ,. , , , . . . - *S ," \. % , - , : - "-:

Chips Technical Report

MHO

MHO is an intelligent tutoring system for teaching basic direct current circuits that automatically

generates problems for the student based on a model of what the student understands and

created with chips (instances, not integrated circuits). The circuit layouts are automatically
generated. The student uses the meters to measure current, resistance and voltage betwveen any two
points in the circuit.

system. This is also a good time to become comtortatile
an working with the different machine capabilities.

(T -e When you are ready to answer the question please
in button on the ready to answer box iocated in the circuit

wiindow.

Utizui the calculator. determine what the reading
4a fromn c to d wig be.

412

VO

Predict answer

bs Ors./

S7 8 9 x

VO a 78LiEr' Aeadui 1 2 3 4i

* lab -3 ne ROF]

Figure 6. A screen from MHO, an intelligent tutoring system for DC circuits.

Appendix6B

% %

Chips Technical Report

VOL IS
Greetings! Here in exploration mode you will be liv-,

6804 Othe opportunity to famnilarize /ourself with our rutorinq
680 0systemn. This is also a quaod time to becoime ;omfortiole

workinq with the differpint machine capabilities.

vo

-~ oExet-cis:

[I~m,~E I Exploraion

NewTopic

int=f lotebook MBrowser

Vab . 6804.0 Quit Tutor

lcd *189

Vcd . 00 03O

* -11340 ~Ie ci.e~2Ife --189 1ld

emoe ,rc id.u

Figure 7. A screen from MHO, an intelligent tutoring system for DC circuits.

A p 1)e n d x 7

Chips Technical Report

lea 16A

a lea 142

vo_II
i~t Al Otebook

tab a 2

a. Figure 8. Using a meter to measure current between paint a and point b,

App.,x8

%'

Chips Technical Report

Voltaville

Voltaville [Schultz, 19871 is a discovery world for students to learn about direct current circuits A -.

circuit simulator and simple data collection and analysis tools are provided so that the student may
explore electricity in a systematic manner. See Figure 9. Voltaville watches to see whether or not the
student actually is being systematic by searching for patterns in the student's behavior and by
prompting the student to formulate and test hypotheses.

'I

h b

+%

lab . 1.2 Rdf z -9.0 H-tg *96 InoNoIeb,
VaC 2 4.8 Hbc .4.0 ICI 1.? .T Nb k

Rbc * 4. 0 Ref . -9.0 F~kd 9 90

VdC . 4.8 8eq . 8 1ii . 4A8
ide - 6 Rhi . 1.0 Vdl . 4.8

Figure 9. Measuring a circuit in the Voltaville discovery world

Chips was used to build a circuit editor and simulator, and several animated simulations to illustrate
concepts such as current flow. The animated simulations are part of a hypertext system of electricity
concepts, which students can browse for background information, terms, and concepts Student.
obtain a paragraph with illustrations by selecting a term from a menu, from a graph illuWtratinl,

A 1))e n d i x)B
-o .
U.1

-'- , " " " " " " ' " -" - -'.-°. -" -" -', -' -'. .,-- - ," -' ',' '. '.'- .'- -- '-" "-",'- ."- ,2 .: ',' "" " .' ," ".-" - "- " '" - -" "i.'" Z -'-' , ") " "- " - " -'- ,.

Ch-ips Technical Report

relationships between concepts, or from a concept description that contains mouse-sensitive terms

if you would like to see same bai definitions now, you cas i select the definition you want from either the tree or the
lizabelow. when you are looking ata definition card, you rr ay soe some boldfaced wardslihrases if you select a

% ~boldfaced wosdlphrase, its definition will be displayed.
T o l:eloin, select an item from the list or tree. Whom you have

N finished looking at definritions. select CONTINUE from the lis t

C XCUll

CUNK s VOLTAGE SOURCE FKSSTOu I SERIS(I"cWT PAR;llL CIRCUIT tic*.

CHIARGE VOL TAGE

AMPERE AMMETER VOLT VOLrMETER OSIM OS IMMETER

*~~ - AIee Apr

* - Vo it S oltm et

- S S Volit :-o-Ili

Paile ri (K it, -jr UiA

Start Series Simulation Start Parallel Simulation
rTh,s ,.Muile'on iu stra 19 t e MVotori of i ?trans no 3 e-,e5 3t'd

orailel :-t Bothi :ae re:-.t, toavet he same 0 t~sg iot~i1'

* - oto tte es-tarsce "a,,, oe iante ressatce Fir i, iy. i

snow trI -a 'togg eitc~t~r,s -tcotg inr

Ie 2 :..?

Figure 10. A screen from Voltaville, a discovery world for DC circuits.

The window labelled "Simulation with Charges"r in figure 10, displays an animation sequence. Snap
shots of the animation are shown in figure 11.

Figure 11. A simulation explaining current flow by animating electrons.

WO

Api endix lOB

Chips Technical Report

Glossary
AND gZate a component ota cicital lo),jC c::rcuit wtI -)M I.npu, I* 'eu'

both inputs arc ' r,,e to n the ,u i r nr' e'r

false. s;ee ale NiOT gate

application interface the hu man. con pLuter inefc ipat CU ar .1 Op icat:' n

button L.......'.... . to press one of the buttons of he, molI~e
Chips a computer program for huildl4 raphnial hum~mn.IomIputeIr I

inter faces
class a template for a particular kind of object includiny me(thods for

responding to mess;ages and variables

class browser................... a tool for examining and modlif ing classe,(s and the!ir taixor-omic
relationships via a lattice diagram of classe(s in Loops

class library a colIlection of cIa ss de fin itions des igned for so ie com mo r p u r Di).
connection a data structure provided by Chips for repres;enting relations hip-

between objects
development interface the human/computer interface used to develop an applicatilon p)a

direct manipulation . .. a method for a person to control a computer program by manipUidt r.
pictures that represent objects of interest

direct manipulation interface a human/computer interface that aI! ,ws the user to comnmand the
computer by selecting and manipulat:.. -artoon-like icons, usuallyv
with a pointing device, such as a mu,. 'e (,e direct manipulation)

display..n the screen of the computer', u. to depict on the screen of the computer1
display object -- an instance of the class DisplayObject or one of its subclasses.

determines how a domain object will be displayed on the screen
domain object an instance of a subclass of the class DomainObject

DomainObject a class of object that can be displayed as a mouse-sensitive picture

drag to move a picture of an object on the display by animating it

Editor n interactive program for creating, displaying and mod i fyin i, somIle
entity of interest-, usually maintains constraints that would be tediOLIs
to maintain by hand andf provides a convenient interface to the entity

Event Queue ...,........... a queue of messages with time-stamps to be sent by an event queue
process in an order consistent with the time-stamps

figure.............................. a description of how a display object is displayed on the screen. St -ed
as an instance of the class PictureSpecif ication

graphical primitives ..,. programming language functions or mnenu opt iOrl for (lrav% Iini
curves, and text, etc. on the display,

icon a picture used in a human/,computer inlterface .Iorp..n l j

or concept in the world%
image Editor a specialization of the Interlisp- 1) -4raphical 1'r S etc,- .% LIwf

allows a user to interactively% desigtn the !,)k- ;.w (:iaa v
object

inheritancean aspect of object of object oriented Wrt.'. fl ci C i-
is created by specializing, an-ther cia-'>. it Yr1 cfi'. - ci.i\ ,I 1-1
super class

inspectora tool for examiningt and mod l%in dr~tli-a -t' i uct I; i r. (-
instance...._ an object in the computer pfI>dUc'd 1)- .1 C1i

Interlisp-D a programming, env ironmn-t %wh prhi .'. ~- - t cC :~I f!C

programn-ii look f4r the, Interi -p p - .~.

implemnted in %%,m !.- ' in

InternalConnector ita class of lumnti! n .'''na' *-i'k'z-l- I i

ph'.':a I cn,,rifI't-C 1 ' i) ' t'!

(lo.-,av 1%

- -.-.-... ~. -. -.- ~ d %

-u WV. I. -VW~ W- I* rX)A- UFr.P -1110~. . W - W i e

Chips Technical Report

S.I e, instance variable, a variable associated ivith an oject whose value
is local to that object

Loops an object oriented programming language and tools for program
development integrated with Interlisp-D

map a list of elements, instances of the class PictureSpecification with

mnemonic tags, that name diierent parts of a display object,
determines the mouse-sensitive regions of a display object

mask .. a description of which areas of a display object are to be opaque and
which are transparent; stored as an instance of the class
PictureSpecification

message a comm and to an object
mechanism a collection of domain objece instances, usually connected together,

representing a domain object's internal behavior
Mechanism Editor a specialized substrate for editing a domain object's mechanism

method a subroutine used by an object upon receipt of a particular message
mouse event pressing or releasing one or more of the mouse buttons

mouse-sensitive an area of the workstation's display which can be selected with the
mouse to produce some effect

mouse-sensitive picture a picture (usually associated with an object) which can be selected with
the mouse to produce some effect

multiple inheritance a capability provided by some object oriented systems, including Loops,
which allows classes to inherit from more than one class

NAND gate a component of a digital logic circuit with two inputs and one output, if
both inputs are true then the output is false, otherwise the output is
true; NAND is an abbreviation for Not AND; see also AND gate, NOT
gate

NOT gate a component of a digital logic circuit with one input and one output, if
the input is true then the output is false, otherwise the output is true,
see also AND gate

object .. an instance or class (see class, instance)
object-oriented programming .. a programming methodology based on the metaphor of communicating

objects, rather than procedures that operate on data types (see class,
instance, message, method)

picture specification an instance of the class PictureSpecification or one of its subclasses
that defines the display and edit representations for part of a display
object

physical connector a mouse-sensitive region of a display object that has special
significance to other display objects that may overlap itr used to
establish physical attachment between display objects

plane ... represents part of a display object in the Im age Editor

select to move the mouse cursor to something of interest and press one of the
mouse buttons

Sketch the Interlisp-D drawing editor: allows the user to interactivelv
construct figures from graphical primitives

specialize to define a new class or method in terms of an existing class or method
spy an instance of the class Spy or one of its subclasses that may be used

with a connection to redirect U10 or do recording of messages sent via
connections

submenu a menu that appear when the mouse cursor is slide out the right-hand
edge of certain menu items indicated by a grey triang!e t

subregion a region within a region. may be arbitrarily shaped
Substrate a class ofobject appearing on the display as a rectangular window and

used for displaying display objects, displaying prompt,; and proces>in
mouse e vent.

Glossarv2

. . ..- 7.......-..-.-.-, .- -,- - . -*- .- . -. .. " . -".'- ., '-- - "'" -.'.. -- - -- : . ,- -,, . , .- , : : tL;, ,, ,.

Chips Technical Report

user interface a computer program that provides a collection of

management system interface elements. sucn a menius and diaioi-, boxes. often includ,,
interactive tools for buildinv prototype interfaces

workstation.............. a single-user computer wvith a lar- grphics display, seo ral
megaby tes of memor, a processor capable of at lIast one miii ion
instructions per second, anld a de% ice for pointing to objects on tnre
display, such as a mouse

0

- - .. . - 0

-.-

(DSK}<LISPFILES)ORIB03?,A .2 0 Mar j7 09 2:48 Page

198703/09

Distribution List [Pittsburgh/Lesgold] NR 4422539

Dr. Phillip L. Ackerman Dr. Nancy S. Anderson

University of Minnesota Department of Psycrology
Department of Psychology University of Maryland
Minneapolis. AN 55455 College Park, MD 20742

Dr, Beth Adelson Technical Director. ARI
Department of Computer Science 5001 Eisennower Avenue
Tufts University Alexandria, VA 22333

Medford, MA 02155
Dr. Alan Baddeley

Air Force Human Resources Lab Medical Research Council

AFHRL/MPD Applied Psychology Unit

BrooKs AFB, TX 78235 15 Chaucer Road

Cambridge C32 2EF
AFOSR. ENGLAND

Life Sciences Directorate

Boiling Air Force Base Dr. Patricia Baggett
Washington. DC 20332 University of Colorado

Department of Psychology

Technical Director, Box 345

Army Human Engineering Lab Boulder, CO 8U309
Aberdeen Proving Ground

MO 21005 Dr. Eva L. Baker
UCLA Center for the Study

Dr. Robert Ahlers of Evaluation
Code N7I1 145 Moore Hall
Human Factors Laboratory University of California
Naval Training Systems Center Los Angeles, CA 90024

Orlando, FL 32813
Dr. Meryl S. Baker

Dr. Ed Aiken Navy Personnel R&D Center
Navy Personnel R&D Center San Diego. CA 92152-6800

San Diego, CA 92152-6800
prof. dott. Bruno G. Bara

Dr. John Allen Unita di ricerca di
Department of Psychology intelligenza artificiale
George Mason University Universita di Milano

4400 University Drive 20122 Milano - via F. Sforza 23
Fairfax, VA 22030 ITALY

Dr. James Anderson Dr. William M Bart
Brown University University of Minnesota
Genter for Neural Science Dept. of Educ Psychology
Providence, RI 02912 330 Burton Hall

178 Pillsbury Dr . S.F.
Dr. John R. Anderson Minneapolis, MN 55455
Department of Psychology
Carnegie-Mellon University Dr. Jackson Beatty
Pittsburgh, PA 15213 Department of Psyciology

University of Cal'torila

Los Angeles. CA J0024

N0

. J •- -, , . , . . . - -, - .
. -

. - - -. - - .. - - .. -.. - -.. -

{0SK}<LiSPFILES>DRIB0310A.:2 10-Mar-37 09:27:48 Page 2

'987,03/09

Distribution List [Pittsburgh/Lesgoid] NR 4422539

Dr. John Black LCDR Robert Carter

Teachers College Office of the Chief

Columbia University of Naval Operations

525 West 121st Street OP-I1B
New York, NY 10027 Pentagon

Washington, DC 20350-2000

Dr. Jeff Bonar

Learning R&D Center Chair. Department of

University of Pittsburgh Psychology
Pittsburgh. PA 15260 College of Arts and Sciences

Catholic University of

Dr. Gordon H. Bower America
Department of Psychology Washington. DC 20064

Stanford University

Stanford, CA 94306 Dr. Michelene Chi

Learning R & D Center
Dr. Robert Breaux University of Pittsburgh

Code N-095R 3939 O'Hara Street
Naval Training Systems Center Pittsburgh. PA 15213
Orlando, FL 32813

Or. L. J. Chmura
Commanding Officer Computer Science and Systems

CAPT Lorin W. Brown Code: 7590

NROTC Unit Information Technology Division
Illinois Institute of Technology Naval Research Laboratory

3300 S. Federal Street Washington. DC 20375
Chicago, IL 60616-3793

Mr. Raymond E. Christal

Dr. John S. Brown AFHRL/MOE
XEROX Palo Alto Research Brooks AFS. TX 78235

Center
3333 Coyote Road Assistant Chief of Staff
Palo Alto. CA 94304 for Research. Development,

Test. and Evaluation

Maj. Hugh Burns Naval Education and

AFHRL/IDE Training Command (N-5)
Lowry AFB, CO 80230-5000 NAS Pensacola, FL 32508

Dr. Jaime Carbonell Dr. Allan M. Collins
Carnegie-Mellon University Bolt Beranek & Newman, Inc.

Department of Psychology 50 Moulton Street
Pittsburgh, PA 15213 Cambridge. MA 02138

Dr. Pat Carpenter Dr. Stanley Collyer

Carnegie-Mellon University Office of Naval Technology
Department of Psychology Code 222
Pittsburgh. PA 15213 800 N. Quincy Street

Arlington. VA 22217-5000

Brian Dallman
3400 TTW/T'GXS
Lowry AFB, CO 30230-5000

t.Q- .yr'.

{DSK}<LISPFILES>DRIB0310A.;2 10-Mar-87 09:27:48 Page 3

1987 '03/09

Distribution List [Pittsburgh/Lesgoid] NR 4422539

Dr. Diane Damos ERIC Facility-Acquisitions
Arizona State University 4833 Rugby Avenue

Department of Psychology Bethesda. MD 20014
Tempe, AZ 85287

Dr, K. Anders Ericsson
Dr. Denise Dellarosa University of Colorado
Department of Psychology Department of Psychology

Yale University Boulder. CO 80309
Box IIA. Yale Station
New Haven, CT 06520 Dr. Martha Farah

Department of Psychology
Dr. R. K. Dismukes Carnegie-Mellon University
Associate Director for Life Sciences Schenley ParK

AFOSR Pittsburgh, PA 15213

Bolling AFB

Washington, DC 20332 Dr. Beatrice J. Farr

Army Research Institute
Dr. Stephanie Doan 5001 Elsenou e, - ,,u

Code 6021 Alexandria, 'A 22333
Naval Air Development Center
Warminster, PA 13974-5000 Dr. Marshall J. Farr

Farr-Sight Co.

Dr. Emanuel Donchin 2520 North Vernon Street

University of Illinois Arlington, VA 22207
Department of Psychology
Champaign, IL 61820 Dr. Paul Feltovich

Southern Illinois University

Defense Technical School of Medicine
Information Center Medical Education Department

*Cameron Station, Bldg 5 P.O. Box 3926
Alexandria, VA 22314 Springfield. IL 62708
Attn: TC

(12 Copies) Dr. Craig I. Fields
ARPA

Dr. Susan Embretson 1400 Wilson Blvd.
University of Kansas Arlington, VA 22209
Psychology Department

426 Fraser J. D. Fletcher
Lawrence, KS 66045 9931 Corsica Street

Vienna VA 22180

Dr. Randy Engle
Department of Psychology Dr. Kenneth 0. Forbus
University of South Carolina University of Illinois

Columbia. SC 29208 Department of Computer Science

1304 West Springfield Avenue
Dr. William Epstein Urbana. IL 61801

University of Wisconsin
W. J. Brogden Psychology Bldg. Dr. John R. Frederiksen
1202 W. Johnson Street Bolt BeraneK & Newman

Madison. WI 53706 50 Moulton Street
Cambridge, MA 02138

A

{DSK}<LISPFILES>DRIB03I0A.:2 10-Mar-87 09:27:48 Page 4

1987.'03/09

Distribution List [Pittsburgh/Lesgold] NR 4422539

Dr. Alfred R. Fregly Dr. Daniel Gopher
AFOSR/NL Industrial Engineering
Bolling AFB. DC 20332 & Management

TECHNION

Dr. Michael Friendly Haifa 32000

Psychology Department ISRAEL
York University

Toronto ONT Or. Sherrie Gott

CANADA M3J IP3 AFHRL/MODJ
Brooks AFB. TX 78235

Julie A. Gadsden
Information Technology Dr. T. Govindaraj

Applications Division Georgia Institute of Technology

Admiralty Research Establishment School of Industrial & Systems
Portsdown. Portsmouth P06 4AA Engineering

UNITED KINGDOM Atlanta, GA 30332

Dr. Michael Genesereth Dr. Richard H. Granger
Stanford University Department of Computer Science

Computer Science Department University of California. Irvine

Stanford. CA 94305 Irvine, CA 92717

Dr. Dedre Gentner Dr. James G. Greeno
University of Illinois University of California
'Department of Psychology Berkeley. CA 94720

603 E. Daniel St.

Champaign, IL 61820 Dr. Henry M. Halff
Halff Resources. Inc.

Dr. Lee Giles 4918 33rd Road. North
AFOSR Arlington. VA 22207

Bolling AFB
Washington. DC 20332 Dr. Bruce Hamill

The Johns Hopkins University

Dr. Robert Glaser Applied Physics Laooratory

Learning Research Laurel. MD 20707
& Development Center

University of Pittsburgh Dr. John M. Hammer
3939 O'Hara Street Center for Man-Machine
Pittsburgh, PA 15260 Systems Research

Georgia Institute of Technology
Dr. Marvin 0. Glock Atlanta, GA 30332

13 Stone Hall
Cornell University Dr. Ray Hannapel
Ithaca, NY 14853 Scientific and Engineering

Personnel and Education
Dr. Sam Glucksberg National Science Foundation

Department of Psychology Washington. DC 20550
Princeton University
Princeton, NJ 08540 Dr. Harold Hawkins

Office of Naval Research
Code 1142CS
800 N. Quincy Street
Arlington. VA 22217-5000

4."

I, ,, ' , . '''... , .-. ,, - .,,, ' " ." -,. . ". .. '. ,"."."_ . .. v . "' """.." .. ".

V _ -, ' ,,,,, , ,, @I ¢ " ¢ r . . ,'-,"-- -- ,"

{DSK}<LISPFILES>DRIB0310A.,2 -Ma , R 9:2':3 Pge 1

198 7/03/D9

Distr'but'on Li t [n tSburr. Lesgold] NR 4422539

Dr. Barbara Hayes-Rotli Dr. Earl Hunt
Department of Computer Ccence Department of Psychology

Stanford University University of Washington

Stanford. CA 95305 Seattle, WA 98105

Dr. Frederick Hayes-Roth Dr. Ed Hutchins
Teknowledge Intelligent Systems Group

525 University Ave. Institute for

Palo Alto, CA 94301 Cognitive Scence IC-01)

UCSD
Dr. Joan 1. Heller La Jolla. CA 92093
505 Haddon Road
Oakland, CA 94606 Dr. Janet Jackson

Rilksuniversitelt Groningen
Dr. Geoffrey Hinton Biologiscn Centrum. ileugel D

Carnegie-Mellon University Kerklaan 30. 91751 NN Haren (Gn.)
Computer Science Department NETHERLANDS
Pittsburgh, PA 15213

Dr. R. J. K. Jacob

Dr. James D. Hollan Computer Science and Systems
MCC, Code: 7590

Human Interface Program Information Technology Division

3500 West Balcones Center Dr. Naval Research Laboratory
Austin, TX 78759 Washington, DC 20375

Dr. John Holland Dr. Zachary Jacobson
University of Michigan Bureau of Management Consulting

2313 East Engineering 365 Laurier Avenue .est
Ann Arbor, MI 48109 Ottawa, Ontario KIA OS5

CANADA
Dr. Melissa Holland
Army Research Institute for the Pharm.-Chim. en Chef Jean Jaco

Behavioral and Social Sciences Division de Psychologipe
5001 Eisenhower Avenue Centre de Rechercnes du
Alexandria, VA 22333 Service de Sante des Armees

108 Boulevard Pinel
Dr. Robert W. Holt 69272 Lyon Cedex 03, FRANCE
Department of Psychology
George Mason University Dr. Robert Jannarone
4400 University Drive Department of Psychology
Fairfax, VA 22030 University of South Carolina

Columbia, SC 29208
Ms. Julia S. Hough
Lawrence Erlbaum Associates Dr. Claude Janvier
6012 Greene Street Directeur. CIRADE
Philadelphia, PA 19144 Universite' du Quebec a Montreal

P.O. Box 8888, St. 'A"
Dr. James Howard Montreal, Quebec H3C 3P8
Dept. of Psychology CANADA
Human Performance Laboratory
Catholic University of

America
Washington, DC 20064

L L

(DSK}<LISPFILES>DRIB0310A.:2 10-Mar-37 09:27:48 Page 6

:987 73,09

Distribution List [P,ttsburgh/Lesgold] 14R 4422539

COL Dennis W. Jarvi Dr. Walter Kintsch

Commander Department of Psychology
AFHRL University of Colorado
Brooks AFB, TX 78235-5601 Campus Box 345

Boulder, CO 80302
Dr. Robin Jeffries
Hewlett-Packard Laboratories Dr. David Klahr

P.O. Box 10490 Carnegie-Mellon University
Palo Alto, CA 94303-0971 Department of Psycnology

Schenley Park

Dr. Douglas H. Jones Pittsburgh. PA 15213
Thatcher Jones Associates

P.O. Box 6640 Mr. Al Kleider
10 Trafalgar Court Army Research Office
Lawrenceville. NJ 08648 P.O. Box 12211

Research Triangle Park

Dr. Marcel Just North Carolina 27709-2211
Carnegie-Mellon University

Department of Psychology Dr. Ronald Knoll

Schenley Park Bell Laboratories

Pittsburgh. PA 15213 Murray Hill, NJ 07974

Dr. Daniel Kahneman Dr. Stephen Kosslyn

Department of Psychology Harvard University

Jniversity of California 1236 William James Hall
Berkeley, CA 94720 33 Kirkland St.

N.% Cambridge, MA 02138

Dr. Milton S. Katz

Army Research Institute Dr. Kenneth Kotovsky

5001 Eisenhower Avenue Department of Psychology

Alexandria, VA 22333 Community College of
Allegheny County

Dr. Steven W. Keele 800 Allegheny Avenue
Department of Psychology Pittsburgh. PA 15233

University of Oregon

Eugene, OR 97403 Dr. David H. Krantz
2 Washington Square Village

Dr. Wendy Kellogg Apt. # 15J
IBM T. J. Watson Research Ctr. New York. NY 10012

P.O. Box 218
Yorktown Heights, NY 10598 Dr. Patrick Kyllonen

325 Aderhold
Dr. David Kieras Department of Educational

University of Michigan Psychology
Technical Communication University of Georgia

College of Engineering Athens, GA 30602
1223 E. Engineerng Building

Ann Arbor. MI 48109 Dr. David R. Lambert

Naval Ocean Systems Center
Code 441T
271 Catalina Bou'evaro

San Diego, CA 92152 6300

'a.n

V" ;,. W_ I.-- V- -V1rV%

DSK}(LISPFILES>DRIBO3:A..2 10 'ar-U7 09:27:48 Page 7

1987/C3/09

Distribution List [Pittsburgm/Lesgold] NR 4422539

Dr. Jill Larkin Library.
Carnegie-Mellon University Naval Training Systems
Department of Psyr iology Center
Pittsburgh, PA 15213 Orlando. FL 32813

Dr. R. W. Lawler Science and Technology Div-sion.
ARI 6 S 10 Library of Congress
5001 Eisenhower Avenue Washington. DC 20540
Alexandria, VA 22333-5600

Dr. Jane Malin
Dr. Alan M. Lesgold Mail Code SR Ill
Learning Research and NASA Johnson Space Center

Development Center Houston. TX 77058
University of Pittsburgn
Pittsburgh, PA 15260 Dr. Sandra P. Marshall

Dept. of Psychology
Dr. Alan Leshner San Diego State University
Deputy Division Director San Diego, CA 92182
Behavioral and Neural Sciences
National Science Foundation Dr, Humberto Maturana
1800 G Street University of Chile
Washington, DC 20550 Santiago

CHILE
Dr. Jim Levin
Department of Dr. Richard E. Mayer

Educational Psychology Department of Psychology
210 Education Building University of California
1310 South Sixth Street Santa Barbara, CA 93106
Champaign, IL 61820-6990

Dr. James McBride
Dr. John Levine Psychological Corporation
Learning R&D Center C/o Harcourt. Brace.
University of Pittsburgh Javanovich Inc.
Pittsburgh, PA 15260 1250 West 6th Street

San Diego, CA 92101
U, Dr. Clayton Lewis

University of Colorado Dr. James L. McGaugn
Department of Computer Science Center for the Neurobiology
Campus Box 430 of Learning and Memory
Boulder, CO 80309 University of California. Irvine

Irvine, CA 92717
Matt Lewis
Department of Psychology Dr. Gail Mc~oon
Carnegie-Mellon University CAS/Psychology
Pittsburgh, PA 15213 Northwestern University

1859 Sheridan Road
Library. Kresge #230

Naval War College Evanston, IL 60201
Newport. RI 02940

Dr. Joe McLachlan
Navy Personnel R&D Center
San Diego, CA 92152-6800

'

.5

- . ' .s*

(DSK}<LISPFrLES>ORIBO310A.:2 10-Mar-87 09:27:48 Page 8

!1987103/09

Distribution List [Pittsburgh/Lesgold] NR 4422539

Dr. James S. McMichael Chair. Department of
Navy Personnel Research Computer Scienco

and Development Center U.S. Naval Academy
Code 05 Annapolis. MO 2!402
San Diego, CA 92152

Chair, Department of
Dr. Barbara Means Systems Engineering
Human Resources U.S. Naval Academy

Research Organization Annapolis, MO 21402
1100 South Washington
Alexandria, VA 22314 Technical Director,

Navy Health Research Center
Dr. Douglas L. Medin P.O. Box 85122
Department of Psychology San Diego. CA 92138
University of Illinois
603 E. Daniel Street Dr. Allen Newell
Champaign, IL 61820 Department of Psychology

Carnegie-Mellon University
Dr. George A. Miller Schenley Park
Department of Psychology Pittsburgh. PA 15213
Green Hall
Princeton University Dr. Mary Jo Nissen
Princeton. NJ 08540 University of Minnesota

N218 Elliott Hall
Dr. Andrew R. Molnar Minneapolis, MN 55455
Scientific and Engineering

Personnel and Education Dr. A. F. Norcio
National Science Foundation Computer Science and Systems
Washington. DC 20550 Code: 7590

Information Technology Division
Dr. William Montague Naval Research Laboratory
NPRDC Code 13 Washingon , DC 20375
San Diego, CA 92152-6800

Dr. Donald A Norman
Dr. Nancy Morris Institute for Cognitive
Search Technology. Inc. Science C-015
5550-A Peachtree Parkway University of California, San Diego
Technology Park/Summit La Jolla. California 92093
Norcross, GA 30092

Deputy Technical Director.
Or. Randy Mumaw NPRDC Code 01A
Program Manager San Diego, CA 92152-6800
Training Research Division
HumRRO Director, Training Laboratory,
1100 S. Washington NPRDC (Code 05)
Alexandria. VA 22314 San Diego. CA 92152 300

Dr. Allen Munro Director, Manoower and Personnel
Behavioral Technology Laboratory,

Laboratories - uSC NPRDC (Code 06)
1845 S. Elena Ave., 4th Floor San Diego. CA 92152 600
Redondo Beach, CA 90277

-,"4.
5°'

A,

DSK}LISPFILES>DRIB0310A.;2 .O-Mar-i7 -9 27:48 Page 3

3:931, 3 3, 09

Distribution List [PittsburgniLesgold] NR 4422539

Director, Human Factors Office of Naval Research.
& Organizational Systems Lab, Code 1142PS
NPRDC (Code 07) 300 N. Quincy Street

San Diego. CA 92152-6800 Arlington, VA 22211 5C00

Fleet Support Office, Office of Naval Research.

NPROC (Code 301) Code 1142CS
San Diego. CA 92152-6800 800 N. Quincy Street

Arlington. VA 22217-5000

Library, NPROC (6 Copies)

Code P2OIL
San Diego. CA 92152-6800 Psychologist.

Office of Naval Research
Technical Director, Branch Office. London

Navy Personnel R&D Center Box 39
San Diego. CA 92152-F800 PO New York. NY 09510

Commanding Officer, Special Assistant for Marine
Naval Research Laboratory Corps Matters,

Code 2627 GNR Code OOMC
% Washington. DC 20390 300 N. Quincy St.

Arlington. VA 2221/-5000
Dr. Harold F. O'Neil, Jr.
School of Education - WPH 801 Psychologist.
Department of Educational Office of Naval Research

Psychology & Technology Liaison Office, Far East

University of Southern California APO San Francisco. CA 96503
Los Angeles, CA 90089-0031

Dr. Judith Orasanu
Dr. Michael Oberlin Army Research Institute
Naval Training Systems Center 5001 Eisennower Avenue

Code 711 Alexandria, VA 22333
Orlando. FL 32813-7100

.: Dr. Douglas Pearse
Dr. Stellan Ohlsson DCIEM
Learning R & D Center Box 2000
University of Pittsburgh Downsview. Ontario
3939 O'Hara Street CANADA
Pittsburgh, PA 15213

Dr. James W. Pellegrino
Office of Naval Research, University of California.

Code 1142BI Santa Barbara
800 N. Quincy Street Department of Psychology
Arlington, VA 22217-5000 Santa Barbara. CA 33106

Office of Naval Research, Dr. Virginia E. Pendergqras

Code 1142 Code 711
800 N. Quincy St. Naval Training Systems Center
Arlington, VA 22217-5000 Orlando, FL 32313-7100

'DSK}<LISPFILES>DRIB0310A.;2 10-Mar-87 09:27:48 P3ge 10

1987'03,01

Distribution List [Pittsburgh/Lesgold] NR 4422539

Dr. Nancy Pennington Dr. James A. Reqga

University of Chicago University of 4arjyand

Graduate School of Business School of Medicine

1101 E. 58th St. Department of Neurology
Chicago, IL 60637 22 South Greene Street

Baltimore. MD 21201
Military Assistant for Training and

Personnel Technology, Dr. Wesley Regian

OUSD (R & E) AFHRL/MOD
Room 30129, The Pentagon Brooks AFB. Tt '923t
Washington. DC 20301-3080

Or. Fred Pe''

Dr. Steven Pinker Physics Department

Department of Psychology University or Ca ')fiili

EI0-018 Berkeley. CA 94720

M.I.T.

Cambridge. MA 02139 Dr. Gil Picard
Mail Stop C04-14

Dr. Martha Polson Drumman Aerospace
t
orp

Department of Psychology Bethpage. NY 1:7:4

Campus Box 346
University of Colorado Jr. Linda G. Poberts

Boulder, CO 80309 Science, Education. and
Transportation Progr3m

Jr. Peter Polson Office of Technology Assessment

University of Colorado Congress ot the Uritel Sate!

Department of Psychology Washington. DC 20510

Boulder. CO 80309
9" Paul R posenaign

Dr Michael I Posner Educatior m Test'ng Lervle

Department of Neurology D-nceton. 'J4 09541

Washington University
Medical School D" Wl m B Po'je

St. LouiS. MO 63113 rci :.Ifn3103 y. :
5550 A Peachtree aartKay

Dr. Mary C. Potter TechnoIopy .lrkSjmmit
Department of Psycholgy Norcross. SA 30392

MIT (E-10-0321
Cambridge. MA 02139 Dr Davd Rmeiha-t

Center for Human
Dr. Paul S. Rau Information Process'.;

Code U-32 Jniv ot Cdliforn-a

Naval Surface Weapons Center La Jolla. CA 92093
White Oak Laboratory

Silver Spring. MD 20903 Or Waite- S, e er

Learning P&D :enter

Or. Lynne Reder University ot P'ttsburgn
Department of Psvcnoogy 3939 O*Hara Street

Carnegie Mellon Universt! Pttsburgh. PA 1520
Scen ey Park

Pttsurgh. PA :52:3

% % N.1 . . I? - - -. , "

j~''W'~I'.V ~'fy~ V .'A Jwd --. r.. rw-F--.- T - W~ ~ ~ 11--'.r77* i'. - 'V -.7 - 'k IL -1

DSK L SPF 1LESs)R I BO I CA 7 73 M~1) 9 2 P I

ctrbtr) .t tsbu r-qn. Lsg Sq 0 R 1 223

Dr. Miram SC'St3CK D r R 1c n ar a -pne

Code 51 'Jawy Pe'-;0nfrC . '-T
Navy Personnel Q &, D Center ~ a rl.CA ?5? J 0J

San Diego. CA 2152-632lj
W(ait n n 7 pcpr

Dr. 4arc Seo-ecirts Brown n'r.PrsI t

Department of Psyc]nology JDrrrPof Ps~rrho'oqy

Wesleyan Jnir~eity P-oviaeie. qC~l.

Middletown. -7 06475
) r i dme~ , . s I s

Dr. Col leen 4. Ser fert -4ei L. e
Tlntelli qent Sistems Grou .n P r? f) 'e
I nstitute Ior rea'r'i! or w P n0

Cogni t ve Sc iencL rC 3 ij r

JCSD 'tto S t)
LaJolla. CA 92C'I3

Dr. Ben Shneroerrarr .ahi!0 i
Dept . of Comoiter 'c ie'rcr ? e J, I. I
Urive rs ity at 4arilaria Io 1 A~ . "I l e*itrr

COll Iege P ar k. MD 2C :,2 Ild~,

Dr. Robert S. Siegler J r K u r ;e i

Carnegie-Me]llon Uni we r srt AIFHPL , mOD
Deoartrneot of Psycrioloqy B-)OKS 4 9

Scrienley Pr iiA o

Pt t s 0iurgnq'. ,A15 213

Dr. riprbert ASimonn 31io ,r

iDe pa rtment t APs yc noo 0n- -95 Oq yr
CarnegrepMe 1oin n vers ity r'

SCher Iy ParK s no or

LTCOL Robert SmTOsan r o i j r,.~
Defense Advaricec Researri 14; ,

Projects Idmrn 15 t rat , in to i nn C, A3

1400OWilson ila.
Arlington. 'VA 2, 01 K K~ I, TI. o .

Dr. H-. Wallace Sinaiko -'2"3... PpHg j Cr.r

Manpower QesearcriQ To

and Adv isory Servic~es r ar . 0.

S m it h Son i a ri srt , ' t o n

Alexandria. ,A 2,314 M(. o,'r rr n

Dr. Riclrard o rom JD .rm an A..

.epartrnent of Ps,,clalogy rt.' .I

,tanfo d ,ners1t
'Sta ford -A 4,1I

Dr. Sharon --acz P'i -~.tne 11P
Army Researc~i : r''p ai rJ

5001 E-serroc.p -Ie
Alexdar'a. ~A 111133 D)oo~'J

Dr Dougiah or,
Behavioral TeC'InO Ojy .- IbS) 'Utr A
13455 S ;ena A1e. -JS Arm~y~' 1- ,
Redondo Beijcn. cA 9027 73e MI ,o,-a j

-eacauarters. J. S. lar'Ile :orps o ,,! o A '2

Code MPI-20
Wasmnnton. DC 20330 qrM

140SC. Hawa II Lab
3ox 39 7' 411

D r. krt Van Lehn
Departmient of Psyclology .' iI~

scne'~e1 Park ,ill eqo

Dr Be:" warren .. ~
3 1t 3 err fe~ K Newn'i . I A4.C
) MAou. t n St-eet

f ~e? ~ e~
M O)r.; n)na ft c re t

>id dr . A -j:c

odle 21

Navi, Per-,onel P&D',) te
Idn -eo.A 2§

r . artaira w~te
9olt Ber,3nek i Newman. JIr
10 M

4 oo*ton 'st'eet
3r'mor'riqe. 4A:230

Dr -hr,',topher WIC~e"S
Department of Psyc'nology
.n'ver, 'ty of I ii s

C'lampa'.n. 12

IL, I-

w w w w w w w *-.. w

